
The dimensional formula for Young’s modulus is:
$\text{A}\text{. }\left[ M{{L}^{-1}}{{T}^{-2}} \right]$
$\text{B}\text{. }\left[ {{M}^{0}}L{{T}^{-2}} \right]$
$\text{C}\text{. }\left[ ML{{T}^{-2}} \right]$
$\text{D}\text{. }\left[ M{{L}^{2}}{{T}^{-2}} \right]$
Answer
570.6k+ views
Hint: Young’s modulus is the ratio of the longitudinal stress to the longitudinal strain produced in a body. The formula of stress and strain are $\sigma =\dfrac{F}{A}$ and $\mu =\dfrac{\Delta l}{l}$ respectively. Find the ratio of the dimensional formula of stress to the dimensional formula of strain to find the dimensional formula of Young’s modulus.
Complete step by step answer:
To compress or stretch a body when a force is applied on a body, it applies an equal force opposite to the direction of the applied force. The force applied per unit area is defined as stress produced in the body. Suppose a force F is applied on the surface of the body of area A, then the stress in the body will be equal to the ratio of force to the area of the surface i.e.$\sigma =\dfrac{F}{A}$ …… (i).
If the applied force is perpendicular to the surface of the body, then the stress is called longitudinal stress.
When the body is compressed or stretched, we say that there is a strain produced in the body. The ratio of the change in the dimension of the body to the original dimension is defined as strain. When the change occurs in the length of the body, the strain is called longitudinal strain. If the change in length is $\Delta $l and the original length is l, then the strain is equal to $\mu =\dfrac{\Delta l}{l}$ ….. (ii).
Therefore, when there is a longitudinal stress produced in the body, there is longitudinal strain in the body.
The ratio of the longitudinal stress to the longitudinal strain is defined as Young’s modulus (Y).
Therefore, $Y=\dfrac{\sigma }{\mu }$ ….. (iii).
If you observe equation (ii), strain is the ratio of the same dimensions. Hence, strain is a dimensionless quantity.
Therefore, Young’s modulus has the same dimensions that stress has.
Therefore, the dimensional formula of Young’s modulus is $\left[ Y \right]=\left[ \sigma \right]=\left[ \dfrac{F}{A} \right]=\dfrac{\left[ F \right]}{\left[ A \right]}$.
The dimensional formula of force is $\left[ ML{{T}^{-2}} \right]$.
The dimensional formula of area is $\left[ {{L}^{2}} \right]$.
Therefore, $\left[ Y \right]=\dfrac{\left[ F \right]}{\left[ A \right]}=\dfrac{\left[ ML{{T}^{-2}} \right]}{\left[ {{L}^{2}} \right]}=\left[ M{{L}^{-1}}{{T}^{-2}} \right]$.
Therefore, the dimensional formula of Young’s modulus is $\left[ M{{L}^{-1}}{{T}^{-2}} \right]$.
Hence, the correct option is A.
Note: Do not confuse between Young’s modulus and modulus of rigidity.
When the applied force is parallel to the surface of the body, the stress produced in the body is called shear stress and the strain caused due to this stress is called shear strain.
Modulus of rigidity is the ratio of shear stress to the shear strain.
Therefore, Young’s modulus and modulus of rigidity are conceptually different but both have the same dimensions.
Complete step by step answer:
To compress or stretch a body when a force is applied on a body, it applies an equal force opposite to the direction of the applied force. The force applied per unit area is defined as stress produced in the body. Suppose a force F is applied on the surface of the body of area A, then the stress in the body will be equal to the ratio of force to the area of the surface i.e.$\sigma =\dfrac{F}{A}$ …… (i).
If the applied force is perpendicular to the surface of the body, then the stress is called longitudinal stress.
When the body is compressed or stretched, we say that there is a strain produced in the body. The ratio of the change in the dimension of the body to the original dimension is defined as strain. When the change occurs in the length of the body, the strain is called longitudinal strain. If the change in length is $\Delta $l and the original length is l, then the strain is equal to $\mu =\dfrac{\Delta l}{l}$ ….. (ii).
Therefore, when there is a longitudinal stress produced in the body, there is longitudinal strain in the body.
The ratio of the longitudinal stress to the longitudinal strain is defined as Young’s modulus (Y).
Therefore, $Y=\dfrac{\sigma }{\mu }$ ….. (iii).
If you observe equation (ii), strain is the ratio of the same dimensions. Hence, strain is a dimensionless quantity.
Therefore, Young’s modulus has the same dimensions that stress has.
Therefore, the dimensional formula of Young’s modulus is $\left[ Y \right]=\left[ \sigma \right]=\left[ \dfrac{F}{A} \right]=\dfrac{\left[ F \right]}{\left[ A \right]}$.
The dimensional formula of force is $\left[ ML{{T}^{-2}} \right]$.
The dimensional formula of area is $\left[ {{L}^{2}} \right]$.
Therefore, $\left[ Y \right]=\dfrac{\left[ F \right]}{\left[ A \right]}=\dfrac{\left[ ML{{T}^{-2}} \right]}{\left[ {{L}^{2}} \right]}=\left[ M{{L}^{-1}}{{T}^{-2}} \right]$.
Therefore, the dimensional formula of Young’s modulus is $\left[ M{{L}^{-1}}{{T}^{-2}} \right]$.
Hence, the correct option is A.
Note: Do not confuse between Young’s modulus and modulus of rigidity.
When the applied force is parallel to the surface of the body, the stress produced in the body is called shear stress and the strain caused due to this stress is called shear strain.
Modulus of rigidity is the ratio of shear stress to the shear strain.
Therefore, Young’s modulus and modulus of rigidity are conceptually different but both have the same dimensions.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

A current I is flowing through wire PQR This wire is class 11 physics CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Swaraj means AComplete Independence B Self rule C Self class 11 social science CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

