Answer
Verified
408k+ views
Hint: Shift at ${n^{th}}$ bright fringe is $(\mu - 1)t = n\lambda $ (where, $\mu $ is the refractive index of the glass plate, $t$ is the thickness of the glass plate, $\lambda $ is the wavelength of the light).
Complete step by step answer:
When two light waves of the same frequency and amplitude superpose in a certain region of a medium, the intensity of the resultant light wave increases at certain points and decreases at some other points in that region. This phenomenon is known as the interference of light and these alternate dark and bright lines are called interference fringes.
According to the formula, shift at ${n^{th}}$ bright fringe is $(\mu - 1)t = n\lambda $ (where, $\mu $ is the refractive index of the glass plate, $t$ is the thickness of the glass plate, $\lambda $ is the wavelength of the light.)
Putting all the given values in the equation, we get,
$(1.5 - 1)t = 4(6000 \times {10^{ - 10}})$
$\implies t = \dfrac{{4(6000 \times {{10}^{ - 10}})}}{{0.5}} = 4.8 \times {10^{ - 10}}m = 4.8\mu m$
So, the thickness of the glass plate is $4.8\mu m$.
$\therefore$ The correct option is A.
Additional Information: In an interference pattern, there is no loss or destruction of light energy in the dark fringes area. The energy just gets shifted from the region of the dark band to the region of the bright band. Total energy remains the same. It can be shown that the average intensity of a set of simultaneous consecutive dark and bright fringes is the same as the intensity of the usual illumination in the same region. Hence, we can say that the interference fringe does not contradict the law of conservation of energy.
Note: It is to be noted that, when light travels through a medium, the equivalent optical path of the actual path traveled by light is the product of the refractive index of the medium and the actual path traveled. Also, though a displacement occurs in fringe pattern due to insertion of a glass plate, fringe width remains unaltered.
Complete step by step answer:
When two light waves of the same frequency and amplitude superpose in a certain region of a medium, the intensity of the resultant light wave increases at certain points and decreases at some other points in that region. This phenomenon is known as the interference of light and these alternate dark and bright lines are called interference fringes.
According to the formula, shift at ${n^{th}}$ bright fringe is $(\mu - 1)t = n\lambda $ (where, $\mu $ is the refractive index of the glass plate, $t$ is the thickness of the glass plate, $\lambda $ is the wavelength of the light.)
Putting all the given values in the equation, we get,
$(1.5 - 1)t = 4(6000 \times {10^{ - 10}})$
$\implies t = \dfrac{{4(6000 \times {{10}^{ - 10}})}}{{0.5}} = 4.8 \times {10^{ - 10}}m = 4.8\mu m$
So, the thickness of the glass plate is $4.8\mu m$.
$\therefore$ The correct option is A.
Additional Information: In an interference pattern, there is no loss or destruction of light energy in the dark fringes area. The energy just gets shifted from the region of the dark band to the region of the bright band. Total energy remains the same. It can be shown that the average intensity of a set of simultaneous consecutive dark and bright fringes is the same as the intensity of the usual illumination in the same region. Hence, we can say that the interference fringe does not contradict the law of conservation of energy.
Note: It is to be noted that, when light travels through a medium, the equivalent optical path of the actual path traveled by light is the product of the refractive index of the medium and the actual path traveled. Also, though a displacement occurs in fringe pattern due to insertion of a glass plate, fringe width remains unaltered.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Collision - Important Concepts and Tips for JEE
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Other Pages
Current Loop as Magnetic Dipole and Its Derivation for JEE
A particle performs SHM of amplitude A along a straight class 11 physics JEE_Main
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Keys & Solutions
JEE Main 2023 January 30 Shift 2 Question Paper with Answer Keys & Solutions
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion