
The central fringe of interference pattern produced by light of wavelength $6000$ A Is found to shift to the position of 4th bright fringe, after a glass plate of $\mu = 1.5$ is introduced. The thickness of the glass plate is:
A) $4.8\mu m$
B) $8.23\mu m$
C) $14.98\mu m$
D) $3.78\mu m$
Answer
445.5k+ views
Hint: Shift at ${n^{th}}$ bright fringe is $(\mu - 1)t = n\lambda $ (where, $\mu $ is the refractive index of the glass plate, $t$ is the thickness of the glass plate, $\lambda $ is the wavelength of the light).
Complete step by step answer:
When two light waves of the same frequency and amplitude superpose in a certain region of a medium, the intensity of the resultant light wave increases at certain points and decreases at some other points in that region. This phenomenon is known as the interference of light and these alternate dark and bright lines are called interference fringes.
According to the formula, shift at ${n^{th}}$ bright fringe is $(\mu - 1)t = n\lambda $ (where, $\mu $ is the refractive index of the glass plate, $t$ is the thickness of the glass plate, $\lambda $ is the wavelength of the light.)
Putting all the given values in the equation, we get,
$(1.5 - 1)t = 4(6000 \times {10^{ - 10}})$
$\implies t = \dfrac{{4(6000 \times {{10}^{ - 10}})}}{{0.5}} = 4.8 \times {10^{ - 10}}m = 4.8\mu m$
So, the thickness of the glass plate is $4.8\mu m$.
$\therefore$ The correct option is A.
Additional Information: In an interference pattern, there is no loss or destruction of light energy in the dark fringes area. The energy just gets shifted from the region of the dark band to the region of the bright band. Total energy remains the same. It can be shown that the average intensity of a set of simultaneous consecutive dark and bright fringes is the same as the intensity of the usual illumination in the same region. Hence, we can say that the interference fringe does not contradict the law of conservation of energy.
Note: It is to be noted that, when light travels through a medium, the equivalent optical path of the actual path traveled by light is the product of the refractive index of the medium and the actual path traveled. Also, though a displacement occurs in fringe pattern due to insertion of a glass plate, fringe width remains unaltered.
Complete step by step answer:
When two light waves of the same frequency and amplitude superpose in a certain region of a medium, the intensity of the resultant light wave increases at certain points and decreases at some other points in that region. This phenomenon is known as the interference of light and these alternate dark and bright lines are called interference fringes.
According to the formula, shift at ${n^{th}}$ bright fringe is $(\mu - 1)t = n\lambda $ (where, $\mu $ is the refractive index of the glass plate, $t$ is the thickness of the glass plate, $\lambda $ is the wavelength of the light.)
Putting all the given values in the equation, we get,
$(1.5 - 1)t = 4(6000 \times {10^{ - 10}})$
$\implies t = \dfrac{{4(6000 \times {{10}^{ - 10}})}}{{0.5}} = 4.8 \times {10^{ - 10}}m = 4.8\mu m$
So, the thickness of the glass plate is $4.8\mu m$.
$\therefore$ The correct option is A.
Additional Information: In an interference pattern, there is no loss or destruction of light energy in the dark fringes area. The energy just gets shifted from the region of the dark band to the region of the bright band. Total energy remains the same. It can be shown that the average intensity of a set of simultaneous consecutive dark and bright fringes is the same as the intensity of the usual illumination in the same region. Hence, we can say that the interference fringe does not contradict the law of conservation of energy.
Note: It is to be noted that, when light travels through a medium, the equivalent optical path of the actual path traveled by light is the product of the refractive index of the medium and the actual path traveled. Also, though a displacement occurs in fringe pattern due to insertion of a glass plate, fringe width remains unaltered.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electrical Field of Charged Spherical Shell - JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Displacement-Time Graph and Velocity-Time Graph for JEE

Collision - Important Concepts and Tips for JEE

Which of the following is the smallest unit of length class 11 physics JEE_Main

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Charging and Discharging of Capacitor

Brief Information on Alpha, Beta and Gamma Decay - JEE Important Topic

Compressibility Factor Z | Plot of Compressibility Factor Z Vs Pressure for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Laws of Motion Class 11 Notes: CBSE Physics Chapter 4
