![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The angular displacement of a particle is given by $\theta = {t^3} + {t^2} + t + 1$ then, its angular velocity at t = 2sec is ………………. $rad{\text{ }}{{\text{s}}^{ - 1}}$
$
A. 27 \\
B. 17 \\
C. 15 \\
D. 16 \\
$
Answer
503.4k+ views
- Hint- Here we will proceed by using the formula of angular velocity i.e. $\dfrac{{\vartriangle D}}{{\vartriangle T}}or\dfrac{{d\theta }}{{dt}}$ where D is change in displacement calculated by differentiating given displacement and T is time taken to cover the distance to get the required result.
Complete step-by-step solution -
As we are given that-
Angular displacement of a particle is $\theta = {t^3} + {t^2} + t + 1$
And t = 2sec
Also we know that formula of angular velocity is$\dfrac{{\vartriangle D}}{{\vartriangle T}}or\dfrac{{d\theta }}{{dt}}$
Where displacement$\left( \theta \right)$ is final position – initial position or change in position
And time is time taken to cover the distance.
Now we will substitute the values of displacement and time in the formula of angular velocity i.e. $\omega = \dfrac{{\vartriangle D}}{{\vartriangle T}}or\dfrac{{d\theta }}{{dt}}$
Differentiating displacement $\theta = {t^3} + {t^2} + t + 1$,
We get- $\dfrac{{d\theta }}{{dt}} = 3{t^2} + 2t + 1$
Now angular velocity at given time t = 2 in Displacement $3{t^2} + 2t + 1$,
We get- $3{\left( 2 \right)^2} + 2\left( 2 \right) + 1$
$\Rightarrow$ 3(4) + 4 + 1
$\Rightarrow$ 12 + 5
$\Rightarrow 17rad{\text{ }}{s^{ - 1}}$
Therefore, the angular velocity at t = 2 is $17rad{\text{ }}{{\text{s}}^{ - 1}}$.
Hence, option B is correct.
Note- While solving this type of question, we should not forget to put the SI unit with the answer as here we kept $rad{\text{ }}{{\text{s}}^{ - 1}}$ i.e. SI unit of angular velocity along with answer as 17. Also we must know how to do derivatives using the concept of differentiation $\left( {n{x^{n - 1}}} \right)$.
Complete step-by-step solution -
As we are given that-
Angular displacement of a particle is $\theta = {t^3} + {t^2} + t + 1$
And t = 2sec
Also we know that formula of angular velocity is$\dfrac{{\vartriangle D}}{{\vartriangle T}}or\dfrac{{d\theta }}{{dt}}$
Where displacement$\left( \theta \right)$ is final position – initial position or change in position
And time is time taken to cover the distance.
Now we will substitute the values of displacement and time in the formula of angular velocity i.e. $\omega = \dfrac{{\vartriangle D}}{{\vartriangle T}}or\dfrac{{d\theta }}{{dt}}$
Differentiating displacement $\theta = {t^3} + {t^2} + t + 1$,
We get- $\dfrac{{d\theta }}{{dt}} = 3{t^2} + 2t + 1$
Now angular velocity at given time t = 2 in Displacement $3{t^2} + 2t + 1$,
We get- $3{\left( 2 \right)^2} + 2\left( 2 \right) + 1$
$\Rightarrow$ 3(4) + 4 + 1
$\Rightarrow$ 12 + 5
$\Rightarrow 17rad{\text{ }}{s^{ - 1}}$
Therefore, the angular velocity at t = 2 is $17rad{\text{ }}{{\text{s}}^{ - 1}}$.
Hence, option B is correct.
Note- While solving this type of question, we should not forget to put the SI unit with the answer as here we kept $rad{\text{ }}{{\text{s}}^{ - 1}}$ i.e. SI unit of angular velocity along with answer as 17. Also we must know how to do derivatives using the concept of differentiation $\left( {n{x^{n - 1}}} \right)$.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the value of x if the mode of the following data class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How many valence electrons does nitrogen have class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)