
State universal law of gravitation and derive the expression for force between two objects of mass \[{m_1}\] and \[{m_2}\] separated by distance ‘\[d\]’.
Answer
494.1k+ views
Hint: Universal law of gravitation was proposed by newton.
It gives the gravitational force between two point masses.
Complete step by step answer:
According to Newton’s Universal law of gravitation:
Every particle of matter in the universe attracts every other particle with a force which is directly proportional to the product of masses of particles and inversely proportional to the square of the distance between them.
If \[{m_1}\]and \[{m_2}\]are two point masses separated by a distance \[d\], the gravitational force of attraction \[F\] is given by :
\[
F \propto {m_1}{m_2} \\
F \propto \dfrac{1}{{{d^2}}} \\
\]
Combining the above two equations we get :
$
F \propto \dfrac{{{m_1}{m_2}}}{{{d^2}}} \\
F = G\dfrac{{{m_1}{m_2}}}{{{d^2}}} \\
$
Where $G$ is called Universal Gravitational Constant. The value of $G$ is :
\[G = 6.67 \times {10^{ - 11}}N{m^2}k{g^{ - 2}}\]
Additional Information:
Properties of Gravitational Force
1. It is always attractive, the weakest force in nature and is of conservative type.
2. It is a central force. (Central force is a position dependent force and it acts along the line joining the two bodies.)
3. It doesn’t depend on the medium between the two bodies.
4. The gravitational attractive force between two bodies doesn’t depend on the presence of other third bodies.
5. It obeys the principle of superposition i.e., the law of vector addition.
Note:
Newton’s law of Gravitation is applied on the point masses but it can also be applied for the bodies of any shape provided the separation between the bodies is greater than the size of the bodies.
It gives the gravitational force between two point masses.
Complete step by step answer:
According to Newton’s Universal law of gravitation:
Every particle of matter in the universe attracts every other particle with a force which is directly proportional to the product of masses of particles and inversely proportional to the square of the distance between them.
If \[{m_1}\]and \[{m_2}\]are two point masses separated by a distance \[d\], the gravitational force of attraction \[F\] is given by :
\[
F \propto {m_1}{m_2} \\
F \propto \dfrac{1}{{{d^2}}} \\
\]
Combining the above two equations we get :
$
F \propto \dfrac{{{m_1}{m_2}}}{{{d^2}}} \\
F = G\dfrac{{{m_1}{m_2}}}{{{d^2}}} \\
$
Where $G$ is called Universal Gravitational Constant. The value of $G$ is :
\[G = 6.67 \times {10^{ - 11}}N{m^2}k{g^{ - 2}}\]
Additional Information:
Properties of Gravitational Force
1. It is always attractive, the weakest force in nature and is of conservative type.
2. It is a central force. (Central force is a position dependent force and it acts along the line joining the two bodies.)
3. It doesn’t depend on the medium between the two bodies.
4. The gravitational attractive force between two bodies doesn’t depend on the presence of other third bodies.
5. It obeys the principle of superposition i.e., the law of vector addition.
Note:
Newton’s law of Gravitation is applied on the point masses but it can also be applied for the bodies of any shape provided the separation between the bodies is greater than the size of the bodies.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
