
State universal law of gravitation and derive the expression for force between two objects of mass \[{m_1}\] and \[{m_2}\] separated by distance ‘\[d\]’.
Answer
501k+ views
Hint: Universal law of gravitation was proposed by newton.
It gives the gravitational force between two point masses.
Complete step by step answer:
According to Newton’s Universal law of gravitation:
Every particle of matter in the universe attracts every other particle with a force which is directly proportional to the product of masses of particles and inversely proportional to the square of the distance between them.
If \[{m_1}\]and \[{m_2}\]are two point masses separated by a distance \[d\], the gravitational force of attraction \[F\] is given by :
\[
F \propto {m_1}{m_2} \\
F \propto \dfrac{1}{{{d^2}}} \\
\]
Combining the above two equations we get :
$
F \propto \dfrac{{{m_1}{m_2}}}{{{d^2}}} \\
F = G\dfrac{{{m_1}{m_2}}}{{{d^2}}} \\
$
Where $G$ is called Universal Gravitational Constant. The value of $G$ is :
\[G = 6.67 \times {10^{ - 11}}N{m^2}k{g^{ - 2}}\]
Additional Information:
Properties of Gravitational Force
1. It is always attractive, the weakest force in nature and is of conservative type.
2. It is a central force. (Central force is a position dependent force and it acts along the line joining the two bodies.)
3. It doesn’t depend on the medium between the two bodies.
4. The gravitational attractive force between two bodies doesn’t depend on the presence of other third bodies.
5. It obeys the principle of superposition i.e., the law of vector addition.
Note:
Newton’s law of Gravitation is applied on the point masses but it can also be applied for the bodies of any shape provided the separation between the bodies is greater than the size of the bodies.
It gives the gravitational force between two point masses.
Complete step by step answer:
According to Newton’s Universal law of gravitation:
Every particle of matter in the universe attracts every other particle with a force which is directly proportional to the product of masses of particles and inversely proportional to the square of the distance between them.
If \[{m_1}\]and \[{m_2}\]are two point masses separated by a distance \[d\], the gravitational force of attraction \[F\] is given by :
\[
F \propto {m_1}{m_2} \\
F \propto \dfrac{1}{{{d^2}}} \\
\]
Combining the above two equations we get :
$
F \propto \dfrac{{{m_1}{m_2}}}{{{d^2}}} \\
F = G\dfrac{{{m_1}{m_2}}}{{{d^2}}} \\
$
Where $G$ is called Universal Gravitational Constant. The value of $G$ is :
\[G = 6.67 \times {10^{ - 11}}N{m^2}k{g^{ - 2}}\]
Additional Information:
Properties of Gravitational Force
1. It is always attractive, the weakest force in nature and is of conservative type.
2. It is a central force. (Central force is a position dependent force and it acts along the line joining the two bodies.)
3. It doesn’t depend on the medium between the two bodies.
4. The gravitational attractive force between two bodies doesn’t depend on the presence of other third bodies.
5. It obeys the principle of superposition i.e., the law of vector addition.
Note:
Newton’s law of Gravitation is applied on the point masses but it can also be applied for the bodies of any shape provided the separation between the bodies is greater than the size of the bodies.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE
