![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
State and explain law of equipartition of energy.
Answer
467.1k+ views
Hint: State the law of equipartition of energy and then prove the law of equipartition for monoatomic gas in the thermal equilibrium any degree of freedom contributing potential energy will have another $\dfrac{1}{2}KT$ associated with it.
Complete answer:
We know that the law of the equipartition of energy states that for a dynamical system in thermal equilibrium that the total energy of the system is shared equally by all the degrees of freedom. The energy associated with each degree of freedom per molecule is $\dfrac{1}{2}KT$ where, K is the Boltzmann constant. In this law an equal amount of energy will be associated with each independent energy state. Let us consider one mole of a monatomic gas in thermal equilibrium at temperature T. each gas molecule has 3 degrees of freedom due to its translational motion.
We know that according to kinetic theory of gases, and then mean kinetic energy of translational motion of a gas molecule is given by,
$\dfrac{1}{2}m{{v}^{2}}=\dfrac{3}{2}KT....\left( 1 \right)$
Where ${{v}^{2}}$ is the mean square velocity of the gas molecule of mass ‘m’, ‘K’ is Boltzmann constant and ‘T’ is the temperature of gas. The average kinetic energy is corresponding to each degree of freedom is the same that is
$\dfrac{1}{2}m{{v}_{x}}^{2}=\dfrac{1}{2}m{{v}_{y}}^{2}=\dfrac{1}{2}m{{v}_{z}}^{2}$
Using (1) equation, we get,
$\dfrac{1}{2}m{{v}_{x}}^{2}=\dfrac{1}{2}m{{v}_{y}}^{2}=\dfrac{1}{2}m{{v}_{z}}^{2}=\dfrac{1}{2}KT$
Thus, the mean kinetic energy per molecule per degree of freedom is the$\dfrac{1}{2}KT$. This result was first deduced by Boltzmann.
Additional information:
The degrees of freedom are the minimum number of the coordinates required to specify the state of a system completely.
Note:
We know that if a molecule is free to move in space, it needs three coordinates to specify its location. Thus it possesses three translational degrees of freedom. It is noted that total energy has an average energy of $\dfrac{1}{2}KBT$ in thermal equilibrium and contributes $\dfrac{1}{2}KB$ to the system’s heat capacity.
Complete answer:
We know that the law of the equipartition of energy states that for a dynamical system in thermal equilibrium that the total energy of the system is shared equally by all the degrees of freedom. The energy associated with each degree of freedom per molecule is $\dfrac{1}{2}KT$ where, K is the Boltzmann constant. In this law an equal amount of energy will be associated with each independent energy state. Let us consider one mole of a monatomic gas in thermal equilibrium at temperature T. each gas molecule has 3 degrees of freedom due to its translational motion.
We know that according to kinetic theory of gases, and then mean kinetic energy of translational motion of a gas molecule is given by,
$\dfrac{1}{2}m{{v}^{2}}=\dfrac{3}{2}KT....\left( 1 \right)$
Where ${{v}^{2}}$ is the mean square velocity of the gas molecule of mass ‘m’, ‘K’ is Boltzmann constant and ‘T’ is the temperature of gas. The average kinetic energy is corresponding to each degree of freedom is the same that is
$\dfrac{1}{2}m{{v}_{x}}^{2}=\dfrac{1}{2}m{{v}_{y}}^{2}=\dfrac{1}{2}m{{v}_{z}}^{2}$
Using (1) equation, we get,
$\dfrac{1}{2}m{{v}_{x}}^{2}=\dfrac{1}{2}m{{v}_{y}}^{2}=\dfrac{1}{2}m{{v}_{z}}^{2}=\dfrac{1}{2}KT$
Thus, the mean kinetic energy per molecule per degree of freedom is the$\dfrac{1}{2}KT$. This result was first deduced by Boltzmann.
Additional information:
The degrees of freedom are the minimum number of the coordinates required to specify the state of a system completely.
Note:
We know that if a molecule is free to move in space, it needs three coordinates to specify its location. Thus it possesses three translational degrees of freedom. It is noted that total energy has an average energy of $\dfrac{1}{2}KBT$ in thermal equilibrium and contributes $\dfrac{1}{2}KB$ to the system’s heat capacity.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the value of x if the mode of the following data class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How many valence electrons does nitrogen have class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)