
Specific heat of Argon at constant pressure is \[0.125{\text{ }}cal{\text{ }}{g^{ - 1}}{K^{ - 1}}\] and at constant volume is \[0.075{\text{ }}cal{\text{ }}{g^{ - 1}}{K^{ - 1}}\]. Calculate the density of Argon at NTP, given \[J = 4.18x{10^7}erg{\text{ }}ca{l^{ - 1}}\] and normal pressure is \[1.01x{10^6}dyne{\text{ }}c{m^{ - 2}}\].
Answer
485.4k+ views
Hint: The ${c_p}$ and ${c_v}$ values of Argon are given in the question. Using the prerequisite knowledge that Argon is a monatomic gas, we can easily solve the above question using the standard formula substitutions.
Formula Used:
1. The molar heat of a gas at constant pressure is given by ${C_p} = M{c_p}$ , where
${C_p}$ is the Molar heat of the gas at the constant pressure, $M$ is the mass of the gas and ${c_p}$ is the specific heat of the gas at the constant pressure.
2. The molar heat of a gas at constant volume is given by ${C_v} = M{c_v}$, where
${C_v}$ is the Molar heat of the gas at the constant volume, $M$ is the mass of the gas and ${c_v}$ is the specific heat of the gas at the constant volume.
Complete step by step answer:
In the above question, it is given that the specific heat of Argon at constant pressure is \[0.125{\text{ }}cal{\text{ }}{g^{ - 1}}{K^{ - 1}}\]and the specific heat of Argon at constant volume is \[0.075{\text{ }}cal{\text{ }}{g^{ - 1}}{K^{ - 1}}\].
Therefore, we can write it as:
$
{\left( {{c_p}} \right)_{Ar}} = 0.125{\text{ }}cal{\text{ }}{g^{ - 1}}{K^{ - 1}} \\
{\left( {{c_v}} \right)_{Ar}} = 0.075{\text{ }}cal{\text{ }}{g^{ - 1}}{K^{ - 1}} \\
$
Using the formulae for the molar heats of Argon at constant pressure and volume and the difference between them, as stated above, we can establish the following relation:
$
{C_p} - {C_v} = \dfrac{R}{J} \\
\Rightarrow M{c_p} - M{c_v} = \dfrac{R}{J} \\
\Rightarrow M\left( {{c_p} - {c_v}} \right) = \dfrac{R}{J} \\
$
Now, using the formula for the density of a gas as stated above, we can substitute the following value of M in the above equation - $M=\rho\times V$
Thus the above equation becomes
$
\rho V\left( {{c_p} - {c_v}} \right) = \dfrac{R}{J} \\
\Rightarrow \left( {{c_p} - {c_v}} \right) = \dfrac{R}{{J\rho V}} \\
$
Now, substituting the following value of R, ie.,$R=\dfrac{PV}{T}$ from the universal gas equation stated above, we get
\[
{c_p} - {c_v} = \dfrac{{PV}}{{TJ\rho V}} \\
\Rightarrow{c_p} - {c_v}= \dfrac{P}{{TJ\rho }} \\
\]
Hence, to get the density of Argon, we solve for , as shown below
\[
{c_p} - {c_v} = \dfrac{P}{{TJ\rho }} \\
\Rightarrow\rho = \dfrac{P}{{TJ\left( {{c_p} - {c_v}} \right)}} \\
\]
Putting values of all the constants and variables in the equation, we get
\[
\rho = \dfrac{P}{{TJ\left( {{c_p} - {c_v}} \right)}} \\
\Rightarrow\rho= \dfrac{{1.01 \times {{10}^6}}}{{293.15 \times 4.18 \times {{10}^7} \times \left( {0.125 - 0.075} \right)}} \\
\Rightarrow\rho= \dfrac{{1.01 \times {{10}^6}}}{{293.15 \times 4.18 \times {{10}^7} \times 0.05}} \\
\therefore\rho= 0.001649{\text{ }}g{\text{ }}c{m^{ - 3}} \\
\]
Hence,the density of Argon is calculated to be 0.001649 g cm-3.
Note:This problem is a simple formula-based one but requires heavy calculations. While attempting such questions, students should try to quickly substitute the formulae values and then proceed with the calculations patiently, and not vice versa. Atomicity of Argon is 3 and specific heat for isothermal process is $\infty $ and adiabatic process is 0.
Formula Used:
1. The molar heat of a gas at constant pressure is given by ${C_p} = M{c_p}$ , where
${C_p}$ is the Molar heat of the gas at the constant pressure, $M$ is the mass of the gas and ${c_p}$ is the specific heat of the gas at the constant pressure.
2. The molar heat of a gas at constant volume is given by ${C_v} = M{c_v}$, where
${C_v}$ is the Molar heat of the gas at the constant volume, $M$ is the mass of the gas and ${c_v}$ is the specific heat of the gas at the constant volume.
Complete step by step answer:
In the above question, it is given that the specific heat of Argon at constant pressure is \[0.125{\text{ }}cal{\text{ }}{g^{ - 1}}{K^{ - 1}}\]and the specific heat of Argon at constant volume is \[0.075{\text{ }}cal{\text{ }}{g^{ - 1}}{K^{ - 1}}\].
Therefore, we can write it as:
$
{\left( {{c_p}} \right)_{Ar}} = 0.125{\text{ }}cal{\text{ }}{g^{ - 1}}{K^{ - 1}} \\
{\left( {{c_v}} \right)_{Ar}} = 0.075{\text{ }}cal{\text{ }}{g^{ - 1}}{K^{ - 1}} \\
$
Using the formulae for the molar heats of Argon at constant pressure and volume and the difference between them, as stated above, we can establish the following relation:
$
{C_p} - {C_v} = \dfrac{R}{J} \\
\Rightarrow M{c_p} - M{c_v} = \dfrac{R}{J} \\
\Rightarrow M\left( {{c_p} - {c_v}} \right) = \dfrac{R}{J} \\
$
Now, using the formula for the density of a gas as stated above, we can substitute the following value of M in the above equation - $M=\rho\times V$
Thus the above equation becomes
$
\rho V\left( {{c_p} - {c_v}} \right) = \dfrac{R}{J} \\
\Rightarrow \left( {{c_p} - {c_v}} \right) = \dfrac{R}{{J\rho V}} \\
$
Now, substituting the following value of R, ie.,$R=\dfrac{PV}{T}$ from the universal gas equation stated above, we get
\[
{c_p} - {c_v} = \dfrac{{PV}}{{TJ\rho V}} \\
\Rightarrow{c_p} - {c_v}= \dfrac{P}{{TJ\rho }} \\
\]
Hence, to get the density of Argon, we solve for , as shown below
\[
{c_p} - {c_v} = \dfrac{P}{{TJ\rho }} \\
\Rightarrow\rho = \dfrac{P}{{TJ\left( {{c_p} - {c_v}} \right)}} \\
\]
Putting values of all the constants and variables in the equation, we get
\[
\rho = \dfrac{P}{{TJ\left( {{c_p} - {c_v}} \right)}} \\
\Rightarrow\rho= \dfrac{{1.01 \times {{10}^6}}}{{293.15 \times 4.18 \times {{10}^7} \times \left( {0.125 - 0.075} \right)}} \\
\Rightarrow\rho= \dfrac{{1.01 \times {{10}^6}}}{{293.15 \times 4.18 \times {{10}^7} \times 0.05}} \\
\therefore\rho= 0.001649{\text{ }}g{\text{ }}c{m^{ - 3}} \\
\]
Hence,the density of Argon is calculated to be 0.001649 g cm-3.
Note:This problem is a simple formula-based one but requires heavy calculations. While attempting such questions, students should try to quickly substitute the formulae values and then proceed with the calculations patiently, and not vice versa. Atomicity of Argon is 3 and specific heat for isothermal process is $\infty $ and adiabatic process is 0.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
