Answer
Verified
439.2k+ views
Hint:When we equal a physical quantity with its dimensional formula, the equations obtained are called dimensional equations. Here, we will compare dimensional equations in the SI unit and CGS unit of each given quantity and see whether both vary by ${10^3}$times or not.
Complete step by step answer:
First, we will consider our first option which is Boltzmann constant.
The dimensional formula of Boltzmann constant is given by $M{L^2}{T^{ - 2}}{K^{ - 1}}$
We know that in CGS units, only mass and length parameters vary and time and temperature remains the same. Unit of mass in the SI unit is kilogram and in CGS, it is gram. And unit of length in SI unit is metre and in CGS unit, it is centimeter.
Thus if we take the formula of Boltzmann constant in SI unit as ${M_1}{L_1}^2{T_1}^{ - 2}{K_1}^{ - 1}$ and in CGS unit as ${M_2}{L_2}^2{T_1}^{ - 2}{K_1}^{ - 1}$, then taking the ratio of both, we get
\[
\dfrac{{{M_1}{L_1}^2{T_1}^{ - 2}{K_1}^{ - 1}}}{{{M_2}{L_2}^2{T_1}^{ - 2}{K_1}^{ - 1}}} \\
\Rightarrow \dfrac{{{M_1}{L_1}^2}}{{{M_2}{L_2}^2}} \\
\Rightarrow \dfrac{{1000{M_2} \times {{\left( {100{L_2}} \right)}^2}}}{{{M_2}{L_2}^2}} \\
\Rightarrow {10^7} \ne {10^3} \\
\]
Thus, Boltzmann constant is not our answer.
Now, let us do the same procedure for option B which is Gravitational constant
The dimensional formula of Gravitational constant is given by ${M^{ - 1}}{L^3}{T^{ - 2}}$
If we take the formula of Gravitational constant in SI unit as ${M_1}^{ - 1}{L_1}^3{T_1}^{ - 2}$ and in CGS unit as ${M_2}^{ - 1}{L_2}^3{T_1}^{ - 2}$, then taking the ratio of both, we get
\[
\dfrac{{{M_1}^{ - 1}{L_1}^3{T_1}^{ - 2}}}{{{M_2}^{ - 1}{L_2}^3{T_1}^{ - 2}}} \\
\Rightarrow \dfrac{{{M_2}{L_1}^3}}{{{M_1}{L_2}^3}} \\
\Rightarrow\dfrac{{{M_2} \times {{\left( {100{L_2}} \right)}^3}}}{{1000{M_2} \times {L_2}^3}} \\
\therefore {10^3} \\
\]
Thus, the SI unit and CGS unit of the Gravitational constant quantity vary by ${10^3}$ times.
Hence, option B is the right answer.
Note: We have got our answer but let us consider remaining options, too. Considering option C, The dimensional formula of Planck's constant is given by ${M^1}{L^1}{T^{ - 1}}$.
If we take the formula of Planck's constant in SI unit as ${M_1}^1{L_1}^1{T_1}^{ - 1}$ and in CGS unit as ${M_2}^1{L_2}^1{T_1}^{ - 1}$, then taking the ratio of both, we get
$
\dfrac{{{M_1}^1{L_1}^1{T_1}^{ - 1}}}{{{M_2}^1{L_2}^1{T_1}^{ - 1}}} \\
\Rightarrow \dfrac{{{M_1}^1{L_1}^1}}{{{M_2}^1{L_2}^1}} \\
\Rightarrow \dfrac{{1000{M_2} \times 100{L_2}}}{{{M_2}{L_2}}} \\
\Rightarrow{10^5} \ne {10^3} \\ $
Similarly, for option D, The dimensional formula of Angular momentum is given by ${M^1}{L^2}{T^{ - 1}}$. If we take the formula of Angular momentum in SI unit as ${M_1}^1{L_1}^2{T_1}^{ - 1}$ and in CGS unit as ${M_2}^1{L_2}^2{T_1}^{ - 1}$, then taking the ratio of both, we get
$
\dfrac{{{M_1}^1{L_1}^2{T_1}^{ - 1}}}{{{M_2}^1{L_2}^2{T_1}^{ - 1}}} \\
\Rightarrow \dfrac{{{M_1}^1{L_1}^2}}{{{M_2}^1{L_2}^2}} \\
\Rightarrow \dfrac{{1000{M_2} \times {{\left( {100{L_2}} \right)}^2}}}{{{M_2}{L_2}^2}} \\
\Rightarrow {10^7} \ne {10^3} \\ $
Complete step by step answer:
First, we will consider our first option which is Boltzmann constant.
The dimensional formula of Boltzmann constant is given by $M{L^2}{T^{ - 2}}{K^{ - 1}}$
We know that in CGS units, only mass and length parameters vary and time and temperature remains the same. Unit of mass in the SI unit is kilogram and in CGS, it is gram. And unit of length in SI unit is metre and in CGS unit, it is centimeter.
Thus if we take the formula of Boltzmann constant in SI unit as ${M_1}{L_1}^2{T_1}^{ - 2}{K_1}^{ - 1}$ and in CGS unit as ${M_2}{L_2}^2{T_1}^{ - 2}{K_1}^{ - 1}$, then taking the ratio of both, we get
\[
\dfrac{{{M_1}{L_1}^2{T_1}^{ - 2}{K_1}^{ - 1}}}{{{M_2}{L_2}^2{T_1}^{ - 2}{K_1}^{ - 1}}} \\
\Rightarrow \dfrac{{{M_1}{L_1}^2}}{{{M_2}{L_2}^2}} \\
\Rightarrow \dfrac{{1000{M_2} \times {{\left( {100{L_2}} \right)}^2}}}{{{M_2}{L_2}^2}} \\
\Rightarrow {10^7} \ne {10^3} \\
\]
Thus, Boltzmann constant is not our answer.
Now, let us do the same procedure for option B which is Gravitational constant
The dimensional formula of Gravitational constant is given by ${M^{ - 1}}{L^3}{T^{ - 2}}$
If we take the formula of Gravitational constant in SI unit as ${M_1}^{ - 1}{L_1}^3{T_1}^{ - 2}$ and in CGS unit as ${M_2}^{ - 1}{L_2}^3{T_1}^{ - 2}$, then taking the ratio of both, we get
\[
\dfrac{{{M_1}^{ - 1}{L_1}^3{T_1}^{ - 2}}}{{{M_2}^{ - 1}{L_2}^3{T_1}^{ - 2}}} \\
\Rightarrow \dfrac{{{M_2}{L_1}^3}}{{{M_1}{L_2}^3}} \\
\Rightarrow\dfrac{{{M_2} \times {{\left( {100{L_2}} \right)}^3}}}{{1000{M_2} \times {L_2}^3}} \\
\therefore {10^3} \\
\]
Thus, the SI unit and CGS unit of the Gravitational constant quantity vary by ${10^3}$ times.
Hence, option B is the right answer.
Note: We have got our answer but let us consider remaining options, too. Considering option C, The dimensional formula of Planck's constant is given by ${M^1}{L^1}{T^{ - 1}}$.
If we take the formula of Planck's constant in SI unit as ${M_1}^1{L_1}^1{T_1}^{ - 1}$ and in CGS unit as ${M_2}^1{L_2}^1{T_1}^{ - 1}$, then taking the ratio of both, we get
$
\dfrac{{{M_1}^1{L_1}^1{T_1}^{ - 1}}}{{{M_2}^1{L_2}^1{T_1}^{ - 1}}} \\
\Rightarrow \dfrac{{{M_1}^1{L_1}^1}}{{{M_2}^1{L_2}^1}} \\
\Rightarrow \dfrac{{1000{M_2} \times 100{L_2}}}{{{M_2}{L_2}}} \\
\Rightarrow{10^5} \ne {10^3} \\ $
Similarly, for option D, The dimensional formula of Angular momentum is given by ${M^1}{L^2}{T^{ - 1}}$. If we take the formula of Angular momentum in SI unit as ${M_1}^1{L_1}^2{T_1}^{ - 1}$ and in CGS unit as ${M_2}^1{L_2}^2{T_1}^{ - 1}$, then taking the ratio of both, we get
$
\dfrac{{{M_1}^1{L_1}^2{T_1}^{ - 1}}}{{{M_2}^1{L_2}^2{T_1}^{ - 1}}} \\
\Rightarrow \dfrac{{{M_1}^1{L_1}^2}}{{{M_2}^1{L_2}^2}} \\
\Rightarrow \dfrac{{1000{M_2} \times {{\left( {100{L_2}} \right)}^2}}}{{{M_2}{L_2}^2}} \\
\Rightarrow {10^7} \ne {10^3} \\ $
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE