
How is R.M.S. voltage of A.C. related to peak value of A.C. voltage?
Answer
552k+ views
Hint:The R.M.S. value of a function of a physical quantity is the square root of the arithmetic mean of the squares of the values of voltage while peak voltage is the maximum value of voltage. In order to find the relation between them use basic relation of general voltage and peak voltage as function to calculate the R.M.S. value of voltage.
Complete step-by-step answer:
According to question
We use analytical methods for calculation of R.M.S. value of voltage.
We know that the R.M.S. value of a function of a physical quantity is the square root of the arithmetic mean of the squares of the values of voltage.
Therefore according to the definition general equation for R.M.S. value of any continuous function V(t) defined over a time interval $T_1$ ≤ t ≤ $T_2$ is given by
Similarly, we can find R.M.S. value of voltage by using its general form as a function which is given as: ${V_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}\sqrt {\dfrac{1}{{{T_2} - {T_1}}}{{\int\limits_{{\text{T1}}}^{{{\text{T}}_{\text{2}}}} {\left[ {V\left( {\text{t}} \right)} \right]} }^{\text{2}}}{\text{dt}}} $-
${\text{V}}\left( {\text{t}} \right){\text{ = }}{{\text{V}}_{\text{o}}}{\text{sin}}\omega t$
Where
${{\text{V}}_{\text{o}}}$= peak voltage
V (t) = function of voltage
From above two equations we have
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}{{\int\limits_{{{\text{T}}_1}}^{{{\text{T}}_{\text{2}}}} {\left[ {{{\text{V}}_{\text{o}}}{\text{sin}}\omega {\text{t}}} \right]} }^{\text{2}}}{\text{dt}}} $
On simplifying we get
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\int\limits_{{{\text{T}}_{\text{1}}}}^{{{\text{T}}_{\text{2}}}} {{\text{si}}{{\text{n}}^{\text{2}}}(\omega t)dt} } $
Using trigonometry transformation so that integration become easy we have, ${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\int\limits_{{{\text{T}}_{\text{1}}}}^{{{\text{T}}_{\text{2}}}} {\dfrac{{1 - \cos \left( {2\omega t} \right)}}{2}{\text{dt}}} } $
On integrating, we get
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\left[ {\dfrac{t}{2} - \dfrac{{\sin \left( {2\omega t} \right)}}{{4\omega }}} \right]} _{{T_1}}^{{T_2}}$,
But since the interval is a whole number of complete cycles (as per definition of R.M.S. value), the value of $\sin $function will be zero on a complete cycle.
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\left[ {\dfrac{t}{2}} \right]} _{{T_1}}^{{T_2}}$
On putting the values we have
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\dfrac{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}{{\text{2}}}} $
Finally we get
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}\dfrac{{{{\text{V}}_ \circ }}}{{\sqrt {\text{2}} }}$
Therefore the above equation is the correct relation between peak voltage and R.M.S. voltage of A.C.
Note:For calculation of R.M.S. voltage we can also use a graphical method in which a sinusoidal function graph is drawn between the voltage and time because the voltage in ac circuit varies sinusoidal. The average value of current as well as voltage over one cycle is zero because the area under the respective graph vs time above and under the y-axis are equal.
Complete step-by-step answer:
According to question
We use analytical methods for calculation of R.M.S. value of voltage.
We know that the R.M.S. value of a function of a physical quantity is the square root of the arithmetic mean of the squares of the values of voltage.
Therefore according to the definition general equation for R.M.S. value of any continuous function V(t) defined over a time interval $T_1$ ≤ t ≤ $T_2$ is given by
Similarly, we can find R.M.S. value of voltage by using its general form as a function which is given as: ${V_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}\sqrt {\dfrac{1}{{{T_2} - {T_1}}}{{\int\limits_{{\text{T1}}}^{{{\text{T}}_{\text{2}}}} {\left[ {V\left( {\text{t}} \right)} \right]} }^{\text{2}}}{\text{dt}}} $-
${\text{V}}\left( {\text{t}} \right){\text{ = }}{{\text{V}}_{\text{o}}}{\text{sin}}\omega t$
Where
${{\text{V}}_{\text{o}}}$= peak voltage
V (t) = function of voltage
From above two equations we have
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}{{\int\limits_{{{\text{T}}_1}}^{{{\text{T}}_{\text{2}}}} {\left[ {{{\text{V}}_{\text{o}}}{\text{sin}}\omega {\text{t}}} \right]} }^{\text{2}}}{\text{dt}}} $
On simplifying we get
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\int\limits_{{{\text{T}}_{\text{1}}}}^{{{\text{T}}_{\text{2}}}} {{\text{si}}{{\text{n}}^{\text{2}}}(\omega t)dt} } $
Using trigonometry transformation so that integration become easy we have, ${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\int\limits_{{{\text{T}}_{\text{1}}}}^{{{\text{T}}_{\text{2}}}} {\dfrac{{1 - \cos \left( {2\omega t} \right)}}{2}{\text{dt}}} } $
On integrating, we get
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\left[ {\dfrac{t}{2} - \dfrac{{\sin \left( {2\omega t} \right)}}{{4\omega }}} \right]} _{{T_1}}^{{T_2}}$,
But since the interval is a whole number of complete cycles (as per definition of R.M.S. value), the value of $\sin $function will be zero on a complete cycle.
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\left[ {\dfrac{t}{2}} \right]} _{{T_1}}^{{T_2}}$
On putting the values we have
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}{{\text{V}}_{\text{o}}}\sqrt {\dfrac{{\text{1}}}{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}\dfrac{{{{\text{T}}_{\text{2}}}{\text{ - }}{{\text{T}}_{\text{1}}}}}{{\text{2}}}} $
Finally we get
${{\text{V}}_{{\text{r}}{\text{.m}}{\text{.s}}{\text{.}}}}{\text{ = }}\dfrac{{{{\text{V}}_ \circ }}}{{\sqrt {\text{2}} }}$
Therefore the above equation is the correct relation between peak voltage and R.M.S. voltage of A.C.
Note:For calculation of R.M.S. voltage we can also use a graphical method in which a sinusoidal function graph is drawn between the voltage and time because the voltage in ac circuit varies sinusoidal. The average value of current as well as voltage over one cycle is zero because the area under the respective graph vs time above and under the y-axis are equal.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Trending doubts
When was the first election held in India a 194748 class 12 sst CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What are the monomers and polymers of carbohydrate class 12 chemistry CBSE

Amount of light entering the eye is controlled by A class 12 physics CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
