![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
What is the relation between pressure, temperature and volume?
Answer
391.5k+ views
Hint: This can be shown by the gas equation ${\text{PV = nRT}}$ , here, ${\text{P}}$ is pressure , ${\text{V}}$ is volume and ${\text{T}}$ is temperature. This law is a combination of Boyle’s law, Charles law and Avogadro’s law.
Combination of these equations states about ideal gases.
Complete answer: Avogadro’s law: This law states that ratio of volumes of gases is directly proportional to the ratio of their number of moles at constant pressure and at absolute temperature.
$$\dfrac{{{V_1}}}{{{V_2}}}\, = \,\dfrac{{{n_1}}}{{{n_2}}}$$
Charles law: This law states the following equation:
$$\dfrac{{{V_1}}}{{{T_1}}}\, = \,\dfrac{{{V_2}}}{{{T_2}}}$$ , at constant pressure throughout the experiment. This is also for ideal gas.
Boyle's law: This law states the following equation:
${P_1}{V_1}\, = \,{P_2}{V_2}$ , at constant temperature.
Combination of the above three equations gives us:
${\text{PV = nRT}}$
The above equation gives us the relation between temperature, pressure and the volume.
Note:
Here the main point to note is that this equation is only for ideal gas not for any real gas. For real gases this equation can be modified. Similarly liquids have also a relation similar to gases. You should remember above equations Boyle's law, Charles law and Avogadro's law to prove the ideal gas equation.
Combination of these equations states about ideal gases.
Complete answer: Avogadro’s law: This law states that ratio of volumes of gases is directly proportional to the ratio of their number of moles at constant pressure and at absolute temperature.
$$\dfrac{{{V_1}}}{{{V_2}}}\, = \,\dfrac{{{n_1}}}{{{n_2}}}$$
Charles law: This law states the following equation:
$$\dfrac{{{V_1}}}{{{T_1}}}\, = \,\dfrac{{{V_2}}}{{{T_2}}}$$ , at constant pressure throughout the experiment. This is also for ideal gas.
Boyle's law: This law states the following equation:
${P_1}{V_1}\, = \,{P_2}{V_2}$ , at constant temperature.
Combination of the above three equations gives us:
${\text{PV = nRT}}$
The above equation gives us the relation between temperature, pressure and the volume.
Note:
Here the main point to note is that this equation is only for ideal gas not for any real gas. For real gases this equation can be modified. Similarly liquids have also a relation similar to gases. You should remember above equations Boyle's law, Charles law and Avogadro's law to prove the ideal gas equation.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the value of x if the mode of the following data class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How many valence electrons does nitrogen have class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)