
What is the relation between pressure, temperature and volume?
Answer
499.2k+ views
Hint: This can be shown by the gas equation ${\text{PV = nRT}}$ , here, ${\text{P}}$ is pressure , ${\text{V}}$ is volume and ${\text{T}}$ is temperature. This law is a combination of Boyle’s law, Charles law and Avogadro’s law.
Combination of these equations states about ideal gases.
Complete answer: Avogadro’s law: This law states that ratio of volumes of gases is directly proportional to the ratio of their number of moles at constant pressure and at absolute temperature.
$$\dfrac{{{V_1}}}{{{V_2}}}\, = \,\dfrac{{{n_1}}}{{{n_2}}}$$
Charles law: This law states the following equation:
$$\dfrac{{{V_1}}}{{{T_1}}}\, = \,\dfrac{{{V_2}}}{{{T_2}}}$$ , at constant pressure throughout the experiment. This is also for ideal gas.
Boyle's law: This law states the following equation:
${P_1}{V_1}\, = \,{P_2}{V_2}$ , at constant temperature.
Combination of the above three equations gives us:
${\text{PV = nRT}}$
The above equation gives us the relation between temperature, pressure and the volume.
Note:
Here the main point to note is that this equation is only for ideal gas not for any real gas. For real gases this equation can be modified. Similarly liquids have also a relation similar to gases. You should remember above equations Boyle's law, Charles law and Avogadro's law to prove the ideal gas equation.
Combination of these equations states about ideal gases.
Complete answer: Avogadro’s law: This law states that ratio of volumes of gases is directly proportional to the ratio of their number of moles at constant pressure and at absolute temperature.
$$\dfrac{{{V_1}}}{{{V_2}}}\, = \,\dfrac{{{n_1}}}{{{n_2}}}$$
Charles law: This law states the following equation:
$$\dfrac{{{V_1}}}{{{T_1}}}\, = \,\dfrac{{{V_2}}}{{{T_2}}}$$ , at constant pressure throughout the experiment. This is also for ideal gas.
Boyle's law: This law states the following equation:
${P_1}{V_1}\, = \,{P_2}{V_2}$ , at constant temperature.
Combination of the above three equations gives us:
${\text{PV = nRT}}$
The above equation gives us the relation between temperature, pressure and the volume.
Note:
Here the main point to note is that this equation is only for ideal gas not for any real gas. For real gases this equation can be modified. Similarly liquids have also a relation similar to gases. You should remember above equations Boyle's law, Charles law and Avogadro's law to prove the ideal gas equation.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

