Answer
Verified
456.9k+ views
Hint: One mole of a substance contains Avogadro’s number \[6.023 \times {10^{23}}\] of molecules. To calculate the number of moles, multiply the molarity with volume (in L).
Complete answer:
Cathode is mercury electrode. At cathode, sodium cation will gain an electron and form sodium metal. Sodium will form amalgam with mercury. Write a balanced half reaction for the formation of sodium amalgam.
\[\text{N}{{\text{a}}^{+}}\text{ + 1}{{\text{e}}^{-}}\text{ + Hg }\to \text{ Na}-\text{Hg }\]
\[500\text{ }ml\text{ }\left( or\text{ }0.500\text{ }L \right)\text{ }of\text{ }4.0\] molar aqueous solution of sodium chloride is prepared.
To calculate the number of moles, multiply the molarity with volume (in L).
\[500\text{ }ml\text{ }\left( or\text{ }0.500\text{ }L \right)\text{ }of\text{ }4.0\] molar aqueous solution of sodium chloride contains \[4.0\text{ mol/L }\times \text{ 0}\text{.500 L = 2}\text{.0}\] moles of sodium chloride. This contains \[2.0\] moles of sodium cations. They will form \[2.0\] moles of sodium amalgam.
The atomic mass of \[Na=23\] . The atomic mass of \[Hg=200\] .
Calculate the mass of sodium amalgam formed.
The mass of \[2.0\] moles of sodium amalgam is \[2\left( 23+200 \right)=446\text{ }g\].
Hence, option D ) \[446\] is the correct answer.
Note: The relationship, “\[1\text{ }faraday=96500\text{ }coulombs\] ” is not used in this reaction. This relationship can be used for the problems, in which the number of electrons participating in a half reaction are given and the number or moles needs to be calculated.
Complete answer:
Cathode is mercury electrode. At cathode, sodium cation will gain an electron and form sodium metal. Sodium will form amalgam with mercury. Write a balanced half reaction for the formation of sodium amalgam.
\[\text{N}{{\text{a}}^{+}}\text{ + 1}{{\text{e}}^{-}}\text{ + Hg }\to \text{ Na}-\text{Hg }\]
\[500\text{ }ml\text{ }\left( or\text{ }0.500\text{ }L \right)\text{ }of\text{ }4.0\] molar aqueous solution of sodium chloride is prepared.
To calculate the number of moles, multiply the molarity with volume (in L).
\[500\text{ }ml\text{ }\left( or\text{ }0.500\text{ }L \right)\text{ }of\text{ }4.0\] molar aqueous solution of sodium chloride contains \[4.0\text{ mol/L }\times \text{ 0}\text{.500 L = 2}\text{.0}\] moles of sodium chloride. This contains \[2.0\] moles of sodium cations. They will form \[2.0\] moles of sodium amalgam.
The atomic mass of \[Na=23\] . The atomic mass of \[Hg=200\] .
Calculate the mass of sodium amalgam formed.
The mass of \[2.0\] moles of sodium amalgam is \[2\left( 23+200 \right)=446\text{ }g\].
Hence, option D ) \[446\] is the correct answer.
Note: The relationship, “\[1\text{ }faraday=96500\text{ }coulombs\] ” is not used in this reaction. This relationship can be used for the problems, in which the number of electrons participating in a half reaction are given and the number or moles needs to be calculated.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Derive an expression for drift velocity of free electrons class 12 physics CBSE
Which are the Top 10 Largest Countries of the World?
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
The energy of a charged conductor is given by the expression class 12 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Derive an expression for electric field intensity due class 12 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Derive an expression for electric potential at point class 12 physics CBSE