
How many permutations of the letters of the word MADHUBANI do not begin with M but end with I?
Answer
536.1k+ views
Hint: Firstly we will calculate total number of possible arrangements that end with letter ‘I’. Once we have that we will find the total number of arrangements when the word starts with ‘M’ and ends with ‘I’, Then we just have to subtract both values to get the desired result.
Complete answer:
It is given that we have to find a permutation for the word ‘MADHUBANI’ which has a total 9 letters.
As the total number of arrangements of word MADHUBANI excluding I which means Total 8 letters.
Here letter A is repeating twice in this word.
Here total number of arrangements that end with the letter ‘I’ are = \[\dfrac{{8!}}{{2!}}\] .
Opening Factorials for further simplification.
\[ \Rightarrow \dfrac{{\left[ {8{\rm{ }} \times {\rm{ }}7{\rm{ }} \times {\rm{ }}6{\rm{ }} \times {\rm{ }}5{\rm{ }} \times {\rm{ }}4{\rm{ }} \times {\rm{ }}3{\rm{ }} \times {\rm{ }}2!} \right]}}{{2!}}\]
Cancelling \[2!\] from denominator and numerator.
So, we get \[ \Rightarrow 8{\rm{ }} \times {\rm{ }}7{\rm{ }} \times {\rm{ }}6{\rm{ }} \times {\rm{ }}5{\rm{ }} \times {\rm{ }}4{\rm{ }} \times {\rm{ }}3 = 20160\]
Hence, the total number of arrangements that end with letter I are 20160
Now we will calculate the number of arrangements when the word starts with ‘M’ and ends with ‘I’ then there would be 7 vacant places which should be filled by the remaining 7 letters.
So, the total number of arrangements that start with ‘M’ and end with letter ‘I’ = \[\dfrac{{7!}}{{2!}}\]
\[ \Rightarrow \dfrac{{\left[ {{\rm{ }}7{\rm{ }} \times {\rm{ }}6{\rm{ }} \times {\rm{ }}5{\rm{ }} \times {\rm{ }}4{\rm{ }} \times {\rm{ }}3{\rm{ }} \times {\rm{ }}2!} \right]}}{{2!}}\]
Cancelling \[2!\] from denominator and numerator.
So, we get \[ \Rightarrow 7{\rm{ }} \times {\rm{ }}6{\rm{ }} \times {\rm{ }}5{\rm{ }} \times {\rm{ }}4{\rm{ }} \times {\rm{ }}3 = 2520\]
Hence, the total number of arrangements that start with ‘M’ and end with letter I are 2520.
Therefore the total number of arrangements that do not start with ‘M’ but end with letter I can be calculated by deducting the total number of arrangements that start with ‘M’ and end with letter I from the total number of arrangements that end with letter I .
So, we get \[ \Rightarrow {\rm{ }}20160{\rm{ }}-{\rm{ }}2520 = 17640\] .
Hence, the total number of arrangements of the letters of the word MADHUBANI do not begin with ‘M’ but end with ‘I’ are 17640.
Note: To solve these types of questions, we must remember that we have to divide the permutation with the factorial of total repeating letters. Like in this question A was repeating twice so we divided permutation by \[2!\] .
Complete answer:
It is given that we have to find a permutation for the word ‘MADHUBANI’ which has a total 9 letters.
As the total number of arrangements of word MADHUBANI excluding I which means Total 8 letters.
Here letter A is repeating twice in this word.
Here total number of arrangements that end with the letter ‘I’ are = \[\dfrac{{8!}}{{2!}}\] .
Opening Factorials for further simplification.
\[ \Rightarrow \dfrac{{\left[ {8{\rm{ }} \times {\rm{ }}7{\rm{ }} \times {\rm{ }}6{\rm{ }} \times {\rm{ }}5{\rm{ }} \times {\rm{ }}4{\rm{ }} \times {\rm{ }}3{\rm{ }} \times {\rm{ }}2!} \right]}}{{2!}}\]
Cancelling \[2!\] from denominator and numerator.
So, we get \[ \Rightarrow 8{\rm{ }} \times {\rm{ }}7{\rm{ }} \times {\rm{ }}6{\rm{ }} \times {\rm{ }}5{\rm{ }} \times {\rm{ }}4{\rm{ }} \times {\rm{ }}3 = 20160\]
Hence, the total number of arrangements that end with letter I are 20160
Now we will calculate the number of arrangements when the word starts with ‘M’ and ends with ‘I’ then there would be 7 vacant places which should be filled by the remaining 7 letters.
So, the total number of arrangements that start with ‘M’ and end with letter ‘I’ = \[\dfrac{{7!}}{{2!}}\]
\[ \Rightarrow \dfrac{{\left[ {{\rm{ }}7{\rm{ }} \times {\rm{ }}6{\rm{ }} \times {\rm{ }}5{\rm{ }} \times {\rm{ }}4{\rm{ }} \times {\rm{ }}3{\rm{ }} \times {\rm{ }}2!} \right]}}{{2!}}\]
Cancelling \[2!\] from denominator and numerator.
So, we get \[ \Rightarrow 7{\rm{ }} \times {\rm{ }}6{\rm{ }} \times {\rm{ }}5{\rm{ }} \times {\rm{ }}4{\rm{ }} \times {\rm{ }}3 = 2520\]
Hence, the total number of arrangements that start with ‘M’ and end with letter I are 2520.
Therefore the total number of arrangements that do not start with ‘M’ but end with letter I can be calculated by deducting the total number of arrangements that start with ‘M’ and end with letter I from the total number of arrangements that end with letter I .
So, we get \[ \Rightarrow {\rm{ }}20160{\rm{ }}-{\rm{ }}2520 = 17640\] .
Hence, the total number of arrangements of the letters of the word MADHUBANI do not begin with ‘M’ but end with ‘I’ are 17640.
Note: To solve these types of questions, we must remember that we have to divide the permutation with the factorial of total repeating letters. Like in this question A was repeating twice so we divided permutation by \[2!\] .
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

