Answer
Verified
478.2k+ views
Hint: Output characteristics graph is the plot between output current and output voltage at a constant input current. This graph shows the variation in output current according to the output voltage keeping constant input current. We can find the value of current and voltage at different intervals of time.
Formulae used:
\[{{R}_{o}}={{\left( \dfrac{\Delta {{V}_{CE}}}{\Delta {{I}_{C}}} \right)}_{{{I}_{B}}=\text{constant}}}\]
${{\beta }_{DC}}=\dfrac{{{I}_{C}}}{{{I}_{B}}}$
${{\beta }_{AC}}=\dfrac{\Delta {{I}_{C}}}{\Delta {{I}_{B}}}$
Complete step by step answer:
Output characteristics are the variation of collector current, say ${{I}_{C}}$, with the collector emitter voltage, say ${{V}_{CE}}$.
Dynamic output resistance or output impedance is defined as a measure of the source’s propensity to drop in voltage when the load draws some current through the circuit. It can also be called as source impedance.
Calculating dynamic resistance,
\[\begin{align}
& {{R}_{o}}={{\left( \dfrac{\Delta {{V}_{CE}}}{\Delta {{I}_{C}}} \right)}_{{{I}_{B}}=\text{constant}}} \\
& =\dfrac{12-8}{(3.6-3.4)\times {{10}^{-3}}} \\
& =\dfrac{4}{0.2\times {{10}^{-3}}}=20\times {{10}^{3}}
\end{align}\]
${{R}_{o}}=20k\Omega $
For an n-p-n transistor, current gain is the ratio of the two currents ${{I}_{C}}$ (Collector current) and ${{I}_{B}}$ (Base current). It is denoted by the symbol Beta, $\beta $ .
Calculating DC current gain,
${{\beta }_{DC}}=\dfrac{{{I}_{C}}}{{{I}_{B}}}$
$\begin{align}
& {{V}_{CE}}=10V,\text{ and }{{I}_{B}}=30\mu A \\
& {{I}_{C}}=3.5m\alpha \\
\end{align}$
Now, ${{\beta }_{DC}}=\dfrac{{{I}_{C}}}{{{I}_{B}}}=\dfrac{3.5mA}{30\mu A}=\dfrac{3.5\times {{10}^{-3}}}{30\times {{10}^{-6}}}=117$
${{\beta }_{DC}}=117$
Since current gain is the ratio of similar quantities, it has no units.
AC current gain of a transistor is defined as the ratio of change in Collector current and change in base current for a fixed time interval.
Calculating AC current gain,
${{\beta }_{AC}}=\dfrac{\Delta {{I}_{C}}}{\Delta {{I}_{B}}}$
$\begin{align}
& {{V}_{C}}=10V,\Delta {{I}_{B}}=40-30=10 \\
& \Delta {{I}_{B}}=10\mu A \\
& \Delta {{I}_{C}}=4.7-3.5=1.2 \\
& \Delta {{I}_{C}}=1.2mA \\
\end{align}$
Now,
\[\begin{align}
& {{\beta }_{AC}}=\dfrac{\Delta {{I}_{C}}}{\Delta {{I}_{B}}}=\dfrac{1.2mA}{10\mu A}=\dfrac{1.2\times {{10}^{-3}}}{10\times {{10}^{-6}}}=120 \\
& {{\beta }_{AC}}=120 \\
\end{align}\]
Value of dynamic resistance is ${{R}_{o}}=20k\Omega $
Value of DC current gain ${{\beta }_{DC}}=117$
Value of AC current gain \[{{\beta }_{AC}}=120\]
Note: Students should know the difference between DC current gain and AC current gain and how to find their values. DC current gain is calculated at fixed values of Collector current and Base current while AC current gain is calculated taking the change in values of Collector current and Base current for some fixed interval of time.
Formulae used:
\[{{R}_{o}}={{\left( \dfrac{\Delta {{V}_{CE}}}{\Delta {{I}_{C}}} \right)}_{{{I}_{B}}=\text{constant}}}\]
${{\beta }_{DC}}=\dfrac{{{I}_{C}}}{{{I}_{B}}}$
${{\beta }_{AC}}=\dfrac{\Delta {{I}_{C}}}{\Delta {{I}_{B}}}$
Complete step by step answer:
Output characteristics are the variation of collector current, say ${{I}_{C}}$, with the collector emitter voltage, say ${{V}_{CE}}$.
Dynamic output resistance or output impedance is defined as a measure of the source’s propensity to drop in voltage when the load draws some current through the circuit. It can also be called as source impedance.
Calculating dynamic resistance,
\[\begin{align}
& {{R}_{o}}={{\left( \dfrac{\Delta {{V}_{CE}}}{\Delta {{I}_{C}}} \right)}_{{{I}_{B}}=\text{constant}}} \\
& =\dfrac{12-8}{(3.6-3.4)\times {{10}^{-3}}} \\
& =\dfrac{4}{0.2\times {{10}^{-3}}}=20\times {{10}^{3}}
\end{align}\]
${{R}_{o}}=20k\Omega $
For an n-p-n transistor, current gain is the ratio of the two currents ${{I}_{C}}$ (Collector current) and ${{I}_{B}}$ (Base current). It is denoted by the symbol Beta, $\beta $ .
Calculating DC current gain,
${{\beta }_{DC}}=\dfrac{{{I}_{C}}}{{{I}_{B}}}$
$\begin{align}
& {{V}_{CE}}=10V,\text{ and }{{I}_{B}}=30\mu A \\
& {{I}_{C}}=3.5m\alpha \\
\end{align}$
Now, ${{\beta }_{DC}}=\dfrac{{{I}_{C}}}{{{I}_{B}}}=\dfrac{3.5mA}{30\mu A}=\dfrac{3.5\times {{10}^{-3}}}{30\times {{10}^{-6}}}=117$
${{\beta }_{DC}}=117$
Since current gain is the ratio of similar quantities, it has no units.
AC current gain of a transistor is defined as the ratio of change in Collector current and change in base current for a fixed time interval.
Calculating AC current gain,
${{\beta }_{AC}}=\dfrac{\Delta {{I}_{C}}}{\Delta {{I}_{B}}}$
$\begin{align}
& {{V}_{C}}=10V,\Delta {{I}_{B}}=40-30=10 \\
& \Delta {{I}_{B}}=10\mu A \\
& \Delta {{I}_{C}}=4.7-3.5=1.2 \\
& \Delta {{I}_{C}}=1.2mA \\
\end{align}$
Now,
\[\begin{align}
& {{\beta }_{AC}}=\dfrac{\Delta {{I}_{C}}}{\Delta {{I}_{B}}}=\dfrac{1.2mA}{10\mu A}=\dfrac{1.2\times {{10}^{-3}}}{10\times {{10}^{-6}}}=120 \\
& {{\beta }_{AC}}=120 \\
\end{align}\]
Value of dynamic resistance is ${{R}_{o}}=20k\Omega $
Value of DC current gain ${{\beta }_{DC}}=117$
Value of AC current gain \[{{\beta }_{AC}}=120\]
Note: Students should know the difference between DC current gain and AC current gain and how to find their values. DC current gain is calculated at fixed values of Collector current and Base current while AC current gain is calculated taking the change in values of Collector current and Base current for some fixed interval of time.
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE