![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Intensity of central fringe in interference pattern is \[0.1\dfrac{W}{{{m^2}}}\] then find intensity at a point having path difference \[\dfrac{\lambda }{3}\] on screen from centre (in \[\dfrac{W}{{{m^2}}}\])
A) $2.5$
B) $5$
C) $7.5$
D) $10$
Answer
471.3k+ views
Hint: Path difference is the measure of the path traveled by two waves. It is measured in terms of wavelength \[\lambda \]. If the measure of path difference between two waves is the even integer multiple of \[\lambda \] means, it is called constructive interference. And in turn, if the measure of path difference is the odd multiple integrals of \[\lambda \] means, it is called destructive interference.
Formula used:
\[I = 4{I_o}{\cos ^2}\dfrac{\phi }{2}\]
Where,
\[I\]- The intensity at any phase difference \[\phi \]
\[{I_o}\]- Intensity of the light
Complete step by step answer:
(i) Intensity of the central fringe on the screen is given as \[0.1\dfrac{W}{{{m^2}}}\]. The intensity of the fringe can be found by the formula,
\[I = 4{I_o}{\cos ^2}\dfrac{\phi }{2}\] --------- (1)
(ii) To find the value of intensity of point at particular path difference, we have to find the intensity of the light \[{I_o}\] and the phase difference \[\phi \]
(iii) Therefore, in case of central fringe, \[I = {I_C}\] and \[\phi = 0\] applying these values in the equation (1)
\[ \Rightarrow {I_C} = 4{I_o}\] \[\left[ {\cos 0 = 1} \right]\]
\[ \Rightarrow {I_o} = \dfrac{{0.1}}{4}\] ---------- (2)
(iv)Finding the phase difference from the path difference by the relation \[\phi = \dfrac{{2\pi }}{\lambda }\Delta x\] Where \[\Delta x\] is the path difference it given here as \[\dfrac{\lambda }{3}\]. Therefore,
\[ \Rightarrow \phi = \dfrac{{2\pi }}{\lambda } \times \dfrac{\lambda }{3}\]
\[ \Rightarrow \phi = \dfrac{{2\pi }}{3}\]
(v) Now we found all the required values. Thus the value of the intensity of the point having path difference \[\dfrac{\lambda }{3}\] is by the equation (1) is,
\[I = 4{I_o}{\cos ^2}\dfrac{\phi }{2}\]
\[ \Rightarrow I = 4 \times \dfrac{{0.1}}{4} \times {\cos ^2}\left( {\dfrac{{\tfrac{{2\pi }}{3}}}{2}} \right)\]
\[ \Rightarrow I = 0.1 \times \dfrac{1}{4}\]
\[ \Rightarrow I = 0.025W{m^{ - 2}}\]
\[\therefore I = 2.5mW{m^{ - 2}}\]. Hence the correct option is A.
Note:
The phase difference between the waves can be found by finding the difference between the two-point at a wave. It is the measure of deviation between the two waves. The phase difference between the two waves will be the same if the two waves are moving together. This denotes that the crests of the two waves meet and the troughs too.
Formula used:
\[I = 4{I_o}{\cos ^2}\dfrac{\phi }{2}\]
Where,
\[I\]- The intensity at any phase difference \[\phi \]
\[{I_o}\]- Intensity of the light
Complete step by step answer:
(i) Intensity of the central fringe on the screen is given as \[0.1\dfrac{W}{{{m^2}}}\]. The intensity of the fringe can be found by the formula,
\[I = 4{I_o}{\cos ^2}\dfrac{\phi }{2}\] --------- (1)
(ii) To find the value of intensity of point at particular path difference, we have to find the intensity of the light \[{I_o}\] and the phase difference \[\phi \]
(iii) Therefore, in case of central fringe, \[I = {I_C}\] and \[\phi = 0\] applying these values in the equation (1)
\[ \Rightarrow {I_C} = 4{I_o}\] \[\left[ {\cos 0 = 1} \right]\]
\[ \Rightarrow {I_o} = \dfrac{{0.1}}{4}\] ---------- (2)
(iv)Finding the phase difference from the path difference by the relation \[\phi = \dfrac{{2\pi }}{\lambda }\Delta x\] Where \[\Delta x\] is the path difference it given here as \[\dfrac{\lambda }{3}\]. Therefore,
\[ \Rightarrow \phi = \dfrac{{2\pi }}{\lambda } \times \dfrac{\lambda }{3}\]
\[ \Rightarrow \phi = \dfrac{{2\pi }}{3}\]
(v) Now we found all the required values. Thus the value of the intensity of the point having path difference \[\dfrac{\lambda }{3}\] is by the equation (1) is,
\[I = 4{I_o}{\cos ^2}\dfrac{\phi }{2}\]
\[ \Rightarrow I = 4 \times \dfrac{{0.1}}{4} \times {\cos ^2}\left( {\dfrac{{\tfrac{{2\pi }}{3}}}{2}} \right)\]
\[ \Rightarrow I = 0.1 \times \dfrac{1}{4}\]
\[ \Rightarrow I = 0.025W{m^{ - 2}}\]
\[\therefore I = 2.5mW{m^{ - 2}}\]. Hence the correct option is A.
Note:
The phase difference between the waves can be found by finding the difference between the two-point at a wave. It is the measure of deviation between the two waves. The phase difference between the two waves will be the same if the two waves are moving together. This denotes that the crests of the two waves meet and the troughs too.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Express the following as a fraction and simplify a class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The length and width of a rectangle are in ratio of class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The ratio of the income to the expenditure of a family class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you write 025 million in scientific notatio class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you convert 295 meters per second to kilometers class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)