
In an angular simple harmonic motion angular amplitude of oscillation is $\pi $ rad and time period is 0.4 sec then calculate its angular velocity at angular displacement $\pi /2$ rad.
$\begin{align}
& \text{A}\text{. 34}\text{.3 rad}/\text{sec} \\
& \text{B}\text{. 42}\text{.7 rad}/\text{sec} \\
& \text{C}\text{. 22}\text{.3 rad}/\text{sec} \\
& \text{D}\text{. 50}\text{.3 rad}/\text{sec} \\
\end{align}$
Answer
516.9k+ views
Hint: Define angular simple harmonic motion. Obtain the expression for the angular displacement of the particle. From the given quantities, find the time for the angular displacement. Obtain the expression for angular velocity by differentiating the angular displacement. By putting the given values, we can find the answer.
Formula used:
$\theta ={{\theta }_{A}}\sin \left( \omega t \right)$
$w=\dfrac{d\theta }{dt}$
$\omega =\dfrac{2\pi }{T}$
Complete step by step answer:
Given in the question that, the angular simple harmonic motion has angular amplitude of $\pi $ rad.
So, the variation of angular amplitude with time for the angular simple harmonic motion can be written as,
$\theta ={{\theta }_{A}}\sin \left( \omega t \right)$
Where t is the time and $\omega $ is the angular frequency of the angular simple harmonic motion.
The angular frequency of a motion can be mathematically expressed in terms of the time period of the motion as,
$\omega =\dfrac{2\pi }{T}$
Now, the time period of the oscillation is 0.4 sec.
So, the angular frequency of the oscillation will be,
$\omega =\dfrac{2\pi }{0.4}$
Putting the values for the expression of amplitude, we get that,
$\theta =\pi \sin \left( \dfrac{2\pi }{0.4}t \right)$
Now, the angular velocity of the angular simple harmonic motion can be found by differentiating the angular amplitude of the motion with respect to time.
So, we can write,
$w=\dfrac{d\theta }{dt}$
Where, w is the angular velocity of the motion.
Putting the value for the angular amplitude on the above equation, we get that,
$\begin{align}
& \Rightarrow w=\dfrac{d}{dt}\left( \pi \sin \left( \dfrac{2\pi }{0.4}t \right) \right) \\
& \Rightarrow w=\pi \times \dfrac{2\pi }{0.4}\cos \left( \dfrac{2\pi }{0.4}t \right) \\
& \Rightarrow w=\dfrac{2{{\pi }^{2}}}{0.4}\cos \left( \dfrac{2\pi }{0.4}t \right) \\
\end{align}$
Again, we need to find the angular velocity of the particle at an angular displacement of $\pi /2$ rad.
Putting this value on the equation for angular amplitude,
$\begin{align}
& \Rightarrow \dfrac{\pi }{2}=\pi \sin \left( \dfrac{2\pi }{0.4}t \right) \\
& \Rightarrow \sin \left( \dfrac{2\pi }{0.4}t \right)=\dfrac{1}{2}=\sin \dfrac{\pi }{6} \\
& \Rightarrow \left( \dfrac{2\pi }{0.4}t \right)=\dfrac{\pi }{6} \\
& \therefore t=\dfrac{0.4}{6\times 2}=\dfrac{0.4}{12}\text{sec} \\
\end{align}$
Putting the value of time on the expression for angular velocity, we get that,
$\begin{align}
& \Rightarrow w=\dfrac{2{{\pi }^{2}}}{0.4}\cos \left( \dfrac{2\pi }{0.4}t \right) \\
& \Rightarrow w=\dfrac{2{{\pi }^{2}}}{0.4}\cos \left( \dfrac{2\pi }{0.4}\times \dfrac{0.4}{12} \right) \\
& \Rightarrow w=\dfrac{2{{\pi }^{2}}}{0.4}\cos \dfrac{\pi }{6} \\
& \Rightarrow w=\dfrac{2{{\pi }^{2}}}{0.4}\times \dfrac{\sqrt{3}}{2} \\
& \therefore w=42.7\text{rad/sec} \\
\end{align}$
The correct option is (B).
Note:
The angular velocity of a particle can be related with the radial velocity of a particle. Mathematically we can express it as,
$\begin{align}
& v=\omega r \\
& \omega =\dfrac{v}{r} \\
\end{align}$
Where, v is the linear velocity and $\omega $ is the angular velocity.
Formula used:
$\theta ={{\theta }_{A}}\sin \left( \omega t \right)$
$w=\dfrac{d\theta }{dt}$
$\omega =\dfrac{2\pi }{T}$
Complete step by step answer:
Given in the question that, the angular simple harmonic motion has angular amplitude of $\pi $ rad.
So, the variation of angular amplitude with time for the angular simple harmonic motion can be written as,
$\theta ={{\theta }_{A}}\sin \left( \omega t \right)$
Where t is the time and $\omega $ is the angular frequency of the angular simple harmonic motion.
The angular frequency of a motion can be mathematically expressed in terms of the time period of the motion as,
$\omega =\dfrac{2\pi }{T}$
Now, the time period of the oscillation is 0.4 sec.
So, the angular frequency of the oscillation will be,
$\omega =\dfrac{2\pi }{0.4}$
Putting the values for the expression of amplitude, we get that,
$\theta =\pi \sin \left( \dfrac{2\pi }{0.4}t \right)$
Now, the angular velocity of the angular simple harmonic motion can be found by differentiating the angular amplitude of the motion with respect to time.
So, we can write,
$w=\dfrac{d\theta }{dt}$
Where, w is the angular velocity of the motion.
Putting the value for the angular amplitude on the above equation, we get that,
$\begin{align}
& \Rightarrow w=\dfrac{d}{dt}\left( \pi \sin \left( \dfrac{2\pi }{0.4}t \right) \right) \\
& \Rightarrow w=\pi \times \dfrac{2\pi }{0.4}\cos \left( \dfrac{2\pi }{0.4}t \right) \\
& \Rightarrow w=\dfrac{2{{\pi }^{2}}}{0.4}\cos \left( \dfrac{2\pi }{0.4}t \right) \\
\end{align}$
Again, we need to find the angular velocity of the particle at an angular displacement of $\pi /2$ rad.
Putting this value on the equation for angular amplitude,
$\begin{align}
& \Rightarrow \dfrac{\pi }{2}=\pi \sin \left( \dfrac{2\pi }{0.4}t \right) \\
& \Rightarrow \sin \left( \dfrac{2\pi }{0.4}t \right)=\dfrac{1}{2}=\sin \dfrac{\pi }{6} \\
& \Rightarrow \left( \dfrac{2\pi }{0.4}t \right)=\dfrac{\pi }{6} \\
& \therefore t=\dfrac{0.4}{6\times 2}=\dfrac{0.4}{12}\text{sec} \\
\end{align}$
Putting the value of time on the expression for angular velocity, we get that,
$\begin{align}
& \Rightarrow w=\dfrac{2{{\pi }^{2}}}{0.4}\cos \left( \dfrac{2\pi }{0.4}t \right) \\
& \Rightarrow w=\dfrac{2{{\pi }^{2}}}{0.4}\cos \left( \dfrac{2\pi }{0.4}\times \dfrac{0.4}{12} \right) \\
& \Rightarrow w=\dfrac{2{{\pi }^{2}}}{0.4}\cos \dfrac{\pi }{6} \\
& \Rightarrow w=\dfrac{2{{\pi }^{2}}}{0.4}\times \dfrac{\sqrt{3}}{2} \\
& \therefore w=42.7\text{rad/sec} \\
\end{align}$
The correct option is (B).
Note:
The angular velocity of a particle can be related with the radial velocity of a particle. Mathematically we can express it as,
$\begin{align}
& v=\omega r \\
& \omega =\dfrac{v}{r} \\
\end{align}$
Where, v is the linear velocity and $\omega $ is the angular velocity.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
Whales are warmblooded animals which live in cold seas class 11 biology CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

What are the similarities and differences between the class 11 biology CBSE

Group the following examples as a pull or a push or class 11 physics CBSE

What is Environment class 11 chemistry CBSE

Polysome is formed by a several ribosomes attached class 11 biology CBSE
