
In a Zener diode regulated power supply, unregulated DC input of \[10\,\,{\text{V}}\] is applied. If the resistance \[\left( {{R_S}} \right)\] connected in series with a Zener diode is \[200\,\,\Omega \] and the Zener voltage \[{V_s} = 5\,\,{\text{V}}\] , the current across the resistance \[{R_S}\] is:
A. \[15\,\,{\text{mA}}\]
B. \[10\,\,{\text{mA}}\]
C. \[20\,\,{\text{mA}}\]
D. \[5\,\,{\text{mA}}\]
E. \[25\,\,{\text{mA}}\]
Answer
481.2k+ views
Hint:First of all, we will calculate the voltage drop across the resistance from the given input voltage and the Zener voltage.As resistance is given so using the Ohm’s law \[V = IR\] , calculate the required current across \[{R_S}\] .
Complete step by step answer:
Given,
DC input voltage, \[{V_i} = 10\,\,{\text{V}}\]
Resistance, \[{R_S} = 200\,\,\Omega \]
Zener voltage, \[{V_s} = 5\,\,{\text{V}}\]
Therefore, voltage drop across \[{R_S}\] is,
\[V = {V_i} - {V_s}\]
$\Rightarrow V = \left( {10 - 5} \right)\,\,{\text{volt}} \\
\Rightarrow V = 5\,\,{\text{volt}}$
According to ohm’s law, the current between the two points through a conductor is directly proportional to the voltage between the two points. The formula is given by, \[V = IR\] .
Therefore, current across the resistance \[{R_S}\] is given by,
\[I = \dfrac{V}{{{R_S}}}\] …… (i)
Substitute the values of \[V = 5\] and \[{R_S} = 200\,\,\Omega \] in equation (i).
Therefore,
$I = \dfrac{5}{{200}}\,\,{\text{A}} \\
\Rightarrow I = 0.025\,\,{\text{A}} \\
\therefore I = 25\,\,{\text{mA}} \\$
Hence, the current across the resistor is \[25\,\,{\text{mA}}\] .The correct option is E.
Additional information:
A Zener diode is a particular type of diode that is engineered to allow current to move backwards predictably when a certain reverse voltage set is reached, defined as the Zener voltage. With a large range of Zener voltages, Zener diodes are produced and some are also variable.In reverse biased state, a zener diode still works. As such, the zener diode can be used to build a basic voltage regulator circuit to sustain a steady DC output voltage through the load, through fluctuations in the input voltage and changes throughout the load current.
Note:It is generally seen that while solving the problem, most of the students tend to make the mistake by adding the input voltage and the Zener voltage. This is absolutely wrong. It is important to note that we actually need to find the voltage drop. Again, after obtaining the answer in amperes we need to multiply with \[1000\] to convert it into milliamperes, but most of the students multiply with \[100\] .
Complete step by step answer:
Given,
DC input voltage, \[{V_i} = 10\,\,{\text{V}}\]
Resistance, \[{R_S} = 200\,\,\Omega \]
Zener voltage, \[{V_s} = 5\,\,{\text{V}}\]
Therefore, voltage drop across \[{R_S}\] is,
\[V = {V_i} - {V_s}\]
$\Rightarrow V = \left( {10 - 5} \right)\,\,{\text{volt}} \\
\Rightarrow V = 5\,\,{\text{volt}}$
According to ohm’s law, the current between the two points through a conductor is directly proportional to the voltage between the two points. The formula is given by, \[V = IR\] .
Therefore, current across the resistance \[{R_S}\] is given by,
\[I = \dfrac{V}{{{R_S}}}\] …… (i)
Substitute the values of \[V = 5\] and \[{R_S} = 200\,\,\Omega \] in equation (i).
Therefore,
$I = \dfrac{5}{{200}}\,\,{\text{A}} \\
\Rightarrow I = 0.025\,\,{\text{A}} \\
\therefore I = 25\,\,{\text{mA}} \\$
Hence, the current across the resistor is \[25\,\,{\text{mA}}\] .The correct option is E.
Additional information:
A Zener diode is a particular type of diode that is engineered to allow current to move backwards predictably when a certain reverse voltage set is reached, defined as the Zener voltage. With a large range of Zener voltages, Zener diodes are produced and some are also variable.In reverse biased state, a zener diode still works. As such, the zener diode can be used to build a basic voltage regulator circuit to sustain a steady DC output voltage through the load, through fluctuations in the input voltage and changes throughout the load current.
Note:It is generally seen that while solving the problem, most of the students tend to make the mistake by adding the input voltage and the Zener voltage. This is absolutely wrong. It is important to note that we actually need to find the voltage drop. Again, after obtaining the answer in amperes we need to multiply with \[1000\] to convert it into milliamperes, but most of the students multiply with \[100\] .
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Write the following in Roman numerals 25819 class 7 maths CBSE

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

What are the major means of transport Explain each class 12 social science CBSE

Franz thinks Will they make them sing in German even class 12 english CBSE
