
If the distance of earth and sun reduces to one fourth of its present value, then the length of the year will become:
A) $\dfrac{1}{6}$of present year
B) $\dfrac{1}{8}$ of present year
C) $\dfrac{1}{4}$ of present year
D) $\dfrac{1}{2}$ of present year
Answer
496.2k+ views
Hint
One year is the time period of Earth orbiting around the Sun. The relation between the distance between 2 objects under mutual gravity and the time periods of their orbits is given by Kepler’s law. We will use it to find the value of a new time period or year with respect to the original year.
Complete step by step answer
In this question we are given that distance between earth and sun is reduced by a factor of 4, kepler’s law of planetary motion states that:
${T^2} \propto {R^3}$
${T^2}\, = \,k{R^3}$ --- (1)
Where k is a constant, when the value of R reduces to one fourth of its original value, then
${T_N}^2\, = \,k\dfrac{{{R^3}}}{{{4^3}}}$ ---(2)
Dividing (2) by (1) we get,
$ \dfrac{{{T_N}^2}}{{{T^2}}}\, = \,\dfrac{{{R^3}}}{{{4^3}{R^3}}} \\
{T_N}\, = \,\dfrac{T}{{{4^{3/2}}}} \\
{T_N}\, = \,\dfrac{T}{8} \\ $
Therefore the option with the correct answer is option B.
Note
Remembering the Kepler's third law can be difficult. So a student can easily derive it by equating the centrifugal force and the Gravitational force on Earth
$ \Rightarrow \dfrac{{GMm}}{{{r^2}}} = m\,{\omega ^2}r$
$ \Rightarrow \dfrac{{GMm}}{{{r^3}}} = m\,{\left( {\dfrac{{2\pi }}{T}} \right)^2}$
$ \Rightarrow {r^3} \propto {T^2}$
The value of constant k in this relation is equal to $\dfrac{{4{\pi ^2}}}{{Gm}}$, where G is the gravitational constant and m is the mass of planet around which the other is revolving, in this case it should be sun. This can be found by equating the centripetal force between two planetary objects to the force between 2 bodies.
One year is the time period of Earth orbiting around the Sun. The relation between the distance between 2 objects under mutual gravity and the time periods of their orbits is given by Kepler’s law. We will use it to find the value of a new time period or year with respect to the original year.
Complete step by step answer
In this question we are given that distance between earth and sun is reduced by a factor of 4, kepler’s law of planetary motion states that:
${T^2} \propto {R^3}$
${T^2}\, = \,k{R^3}$ --- (1)
Where k is a constant, when the value of R reduces to one fourth of its original value, then
${T_N}^2\, = \,k\dfrac{{{R^3}}}{{{4^3}}}$ ---(2)
Dividing (2) by (1) we get,
$ \dfrac{{{T_N}^2}}{{{T^2}}}\, = \,\dfrac{{{R^3}}}{{{4^3}{R^3}}} \\
{T_N}\, = \,\dfrac{T}{{{4^{3/2}}}} \\
{T_N}\, = \,\dfrac{T}{8} \\ $
Therefore the option with the correct answer is option B.
Note
Remembering the Kepler's third law can be difficult. So a student can easily derive it by equating the centrifugal force and the Gravitational force on Earth
$ \Rightarrow \dfrac{{GMm}}{{{r^2}}} = m\,{\omega ^2}r$
$ \Rightarrow \dfrac{{GMm}}{{{r^3}}} = m\,{\left( {\dfrac{{2\pi }}{T}} \right)^2}$
$ \Rightarrow {r^3} \propto {T^2}$
The value of constant k in this relation is equal to $\dfrac{{4{\pi ^2}}}{{Gm}}$, where G is the gravitational constant and m is the mass of planet around which the other is revolving, in this case it should be sun. This can be found by equating the centripetal force between two planetary objects to the force between 2 bodies.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Write the following in Roman numerals 25819 class 7 maths CBSE

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
