
Find the relation between drift velocity and relaxation time of carriers in a conductor. A conductor of length L is connected to a d.c.. The source of emf ‘E’. If the length of the conductor is tripled by stretching it, keeping ‘E’ constant, explain how its drift velocity would be affected.
Answer
507.5k+ views
Hint: Average relaxation time is the time between two successive collisions of the electrons in a conductor and drift velocity is the average velocity with which the electrons get drifted towards the positive terminal of the conductor in an electric field.
Complete step-by-step solution:
At any instant of time, the velocity acquired by the electrons with thermal velocity \[{{u}_{1}}\]and acceleration \[a\] is:
\[{{v}_{1}}={{u}_{1}}+a{{\tau }_{1}}\]
Average velocity \[{{v}_{d}}\] of all the electrons in the conductor would be the sum of averages of each term. The sum of averages of the thermal velocities of \[n\] electrons in the conductor is 0.
Hence,
\[{{v}_{d}}=0+a{{\tau }_{{}}}\]
Here
\[\tau =\dfrac{{{\tau }_{1}}+{{\tau }_{2}}+.....+{{\tau }_{n}}}{n}\]
The acceleration of an electron placed in an electric field is,
\[a=\dfrac{F}{m}=-\dfrac{eE}{M}\]
Substituting this in the formula of \[{{v}_{d}}\], we get
\[{{v}_{d}}=-\dfrac{eE}{M}\tau \]
For second part of the question, we know that the drift velocity is inversely proportional to the distance of the conductor:
\[{{v}_{d}}\propto \dfrac{1}{l}\]
Therefore, the correct answer is when the length of the conductor is tripled the drift velocity becomes one third.
Note: Students must remember that the negative sign in drift velocity formula shows that the drift velocity is in the opposite direction of the applied electric field. Drift velocity of electrons is of the order of \[{{10}^{-4}}m{{s}^{-1}}\] and the order of average relaxation time is \[{{10}^{-14}}s\].
Complete step-by-step solution:
At any instant of time, the velocity acquired by the electrons with thermal velocity \[{{u}_{1}}\]and acceleration \[a\] is:
\[{{v}_{1}}={{u}_{1}}+a{{\tau }_{1}}\]
Average velocity \[{{v}_{d}}\] of all the electrons in the conductor would be the sum of averages of each term. The sum of averages of the thermal velocities of \[n\] electrons in the conductor is 0.
Hence,
\[{{v}_{d}}=0+a{{\tau }_{{}}}\]
Here
\[\tau =\dfrac{{{\tau }_{1}}+{{\tau }_{2}}+.....+{{\tau }_{n}}}{n}\]
The acceleration of an electron placed in an electric field is,
\[a=\dfrac{F}{m}=-\dfrac{eE}{M}\]
Substituting this in the formula of \[{{v}_{d}}\], we get
\[{{v}_{d}}=-\dfrac{eE}{M}\tau \]
For second part of the question, we know that the drift velocity is inversely proportional to the distance of the conductor:
\[{{v}_{d}}\propto \dfrac{1}{l}\]
Therefore, the correct answer is when the length of the conductor is tripled the drift velocity becomes one third.
Note: Students must remember that the negative sign in drift velocity formula shows that the drift velocity is in the opposite direction of the applied electric field. Drift velocity of electrons is of the order of \[{{10}^{-4}}m{{s}^{-1}}\] and the order of average relaxation time is \[{{10}^{-14}}s\].
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

