Answer
Verified
389.6k+ views
Hint: Average relaxation time is the time between two successive collisions of the electrons in a conductor and drift velocity is the average velocity with which the electrons get drifted towards the positive terminal of the conductor in an electric field.
Complete step-by-step solution:
At any instant of time, the velocity acquired by the electrons with thermal velocity \[{{u}_{1}}\]and acceleration \[a\] is:
\[{{v}_{1}}={{u}_{1}}+a{{\tau }_{1}}\]
Average velocity \[{{v}_{d}}\] of all the electrons in the conductor would be the sum of averages of each term. The sum of averages of the thermal velocities of \[n\] electrons in the conductor is 0.
Hence,
\[{{v}_{d}}=0+a{{\tau }_{{}}}\]
Here
\[\tau =\dfrac{{{\tau }_{1}}+{{\tau }_{2}}+.....+{{\tau }_{n}}}{n}\]
The acceleration of an electron placed in an electric field is,
\[a=\dfrac{F}{m}=-\dfrac{eE}{M}\]
Substituting this in the formula of \[{{v}_{d}}\], we get
\[{{v}_{d}}=-\dfrac{eE}{M}\tau \]
For second part of the question, we know that the drift velocity is inversely proportional to the distance of the conductor:
\[{{v}_{d}}\propto \dfrac{1}{l}\]
Therefore, the correct answer is when the length of the conductor is tripled the drift velocity becomes one third.
Note: Students must remember that the negative sign in drift velocity formula shows that the drift velocity is in the opposite direction of the applied electric field. Drift velocity of electrons is of the order of \[{{10}^{-4}}m{{s}^{-1}}\] and the order of average relaxation time is \[{{10}^{-14}}s\].
Complete step-by-step solution:
At any instant of time, the velocity acquired by the electrons with thermal velocity \[{{u}_{1}}\]and acceleration \[a\] is:
\[{{v}_{1}}={{u}_{1}}+a{{\tau }_{1}}\]
Average velocity \[{{v}_{d}}\] of all the electrons in the conductor would be the sum of averages of each term. The sum of averages of the thermal velocities of \[n\] electrons in the conductor is 0.
Hence,
\[{{v}_{d}}=0+a{{\tau }_{{}}}\]
Here
\[\tau =\dfrac{{{\tau }_{1}}+{{\tau }_{2}}+.....+{{\tau }_{n}}}{n}\]
The acceleration of an electron placed in an electric field is,
\[a=\dfrac{F}{m}=-\dfrac{eE}{M}\]
Substituting this in the formula of \[{{v}_{d}}\], we get
\[{{v}_{d}}=-\dfrac{eE}{M}\tau \]
For second part of the question, we know that the drift velocity is inversely proportional to the distance of the conductor:
\[{{v}_{d}}\propto \dfrac{1}{l}\]
Therefore, the correct answer is when the length of the conductor is tripled the drift velocity becomes one third.
Note: Students must remember that the negative sign in drift velocity formula shows that the drift velocity is in the opposite direction of the applied electric field. Drift velocity of electrons is of the order of \[{{10}^{-4}}m{{s}^{-1}}\] and the order of average relaxation time is \[{{10}^{-14}}s\].
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Write the difference between order and molecularity class 11 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What are noble gases Why are they also called inert class 11 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between calcination and roasting class 11 chemistry CBSE