
Establish the relation between moment of inertia and angular momentum. Define moment of inertia on the basis of this relation.
Answer
440k+ views
Hint: To calculate the relation between moment of inertia and angular momentum, we have to know about the formula of angular momentum and moment of inertia in terms of mass, velocity i.e.,
Angular momentum $L = mvr$
Angular velocity $\omega = \dfrac{v}{r}$
Complete step by step solution:
Angular momentum is the rotational equivalent of linear momentum i.e.,
Angular momentum L $ = $ radius (r) $ \times $ linear momentum (p) …..(1)
Linear momentum p is the product of mass and velocity i.e.,
$p = m \times v$ …..(2)
From equation (1) and (2)
$L = mvr$
Now dividing and multiplying by r
$L = mvr \times \dfrac{r}{r}$
$L = (m{r^2})\left( {\dfrac{v}{r}} \right)$ …..(3)
We know that angular velocity
$\omega = \dfrac{v}{r}$ …..(4)
From equation (3) & (4)
$L = (m{r^2})\omega $
Here $m{r^2}$ is known as the moment of inertia I.
So, $\boxed{L = I\omega }$
Above expression shows the relation between moment of inertia and angular momentum.
According to above formula we can say that moment of inertia I is a quantity expressing a body’s tendency to resist angular acceleration which is the sum of the products of the mass of each particle in the body with the square of its distance from the axis of rotation i.e., $\boxed{I = m{r^2}}$
Unit $ \to kg{m^2}$
Dimension $ \to [M{L^2}]$
It is a linear quantity.
Note: To establish the relation between any 2 physical quantities we must know about the definitions of them and some basic relation related to them.
Angular momentum $L = mvr$
Angular velocity $\omega = \dfrac{v}{r}$
Complete step by step solution:
Angular momentum is the rotational equivalent of linear momentum i.e.,
Angular momentum L $ = $ radius (r) $ \times $ linear momentum (p) …..(1)
Linear momentum p is the product of mass and velocity i.e.,
$p = m \times v$ …..(2)
From equation (1) and (2)
$L = mvr$
Now dividing and multiplying by r
$L = mvr \times \dfrac{r}{r}$
$L = (m{r^2})\left( {\dfrac{v}{r}} \right)$ …..(3)
We know that angular velocity
$\omega = \dfrac{v}{r}$ …..(4)
From equation (3) & (4)
$L = (m{r^2})\omega $
Here $m{r^2}$ is known as the moment of inertia I.
So, $\boxed{L = I\omega }$
Above expression shows the relation between moment of inertia and angular momentum.
According to above formula we can say that moment of inertia I is a quantity expressing a body’s tendency to resist angular acceleration which is the sum of the products of the mass of each particle in the body with the square of its distance from the axis of rotation i.e., $\boxed{I = m{r^2}}$
Unit $ \to kg{m^2}$
Dimension $ \to [M{L^2}]$
It is a linear quantity.
Note: To establish the relation between any 2 physical quantities we must know about the definitions of them and some basic relation related to them.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE
