
Dimensions of magnetic field intensity is :
A. $[{{M}^{0}}{{L}^{-1}}{{T}^{0}}{{A}^{1}}]$
B. $[ML{{T}^{-1}}{{A}^{-1}}]$
C. $[M{{L}^{0}}{{T}^{-2}}{{A}^{-1}}]$
D. $[ML{{T}^{-2}}A]$
Answer
509.7k+ views
Hint:We are supposed to find the dimensional formula of magnetic field intensity. For that, we have to analyse the definition and the numerical formula of the same. Further, we can deduce the dimensional formula by finding the degree of dependence of a physical quantity on another. The principle of consistency of two expressions can be used to find the equation relating these two quantities.
Formulas used:
$F=BIl$, where $F$ is the force experienced by a wire of length $l$ in a magnetic field $B$ when it carries a current of the value $I$.
Complete step by step answer:
We know that the value of the force experienced by a current carrying wire in a magnetic field is obtained from the formula
$F=BIl$
$\Rightarrow B=\dfrac{F}{Il}$
The dimensional formula for force is $[ML{{T}^{-2}}]$
The dimensional formula for current is $[A]$
The dimensional formula for length is $[L]$
Hence, the dimensional formula for B is
$\dfrac{[ML{{T}^{-2}}]}{{{[A]}^{{}}}[L]}=\dfrac{[M{{T}^{-2}}]}{[A]}=[M{{L}^{0}}{{T}^{-2}}{{A}^{-1}}]$
Therefore, we can represent the dimensional formula of magnetic field intensity is $[M{{L}^{0}}{{T}^{-2}}{{A}^{-1}}]$
Therefore, option C is the correct choice among the four.
Note:Dimensional formula is widely used in many areas. However, there are a few problems along the way. Dimensionless quantities as well as the proportionality constant cannot be determined in this way. It does not apply to trigonometric, logarithmic and exponential functions. When we look at a quantity that is dependent on more than three quantities, this approach will be difficult. In line with all of this, if one side of our equation has addition or subtraction of quantities, this approach is not appropriate.
Formulas used:
$F=BIl$, where $F$ is the force experienced by a wire of length $l$ in a magnetic field $B$ when it carries a current of the value $I$.
Complete step by step answer:
We know that the value of the force experienced by a current carrying wire in a magnetic field is obtained from the formula
$F=BIl$
$\Rightarrow B=\dfrac{F}{Il}$
The dimensional formula for force is $[ML{{T}^{-2}}]$
The dimensional formula for current is $[A]$
The dimensional formula for length is $[L]$
Hence, the dimensional formula for B is
$\dfrac{[ML{{T}^{-2}}]}{{{[A]}^{{}}}[L]}=\dfrac{[M{{T}^{-2}}]}{[A]}=[M{{L}^{0}}{{T}^{-2}}{{A}^{-1}}]$
Therefore, we can represent the dimensional formula of magnetic field intensity is $[M{{L}^{0}}{{T}^{-2}}{{A}^{-1}}]$
Therefore, option C is the correct choice among the four.
Note:Dimensional formula is widely used in many areas. However, there are a few problems along the way. Dimensionless quantities as well as the proportionality constant cannot be determined in this way. It does not apply to trigonometric, logarithmic and exponential functions. When we look at a quantity that is dependent on more than three quantities, this approach will be difficult. In line with all of this, if one side of our equation has addition or subtraction of quantities, this approach is not appropriate.
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Sanjeevani booti brought about by Lord Hanuman to cure class 11 biology CBSE

A police jeep on patrol duty on a national highway class 11 physics CBSE

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE
