
Dimensions of $\dfrac{1}{{{\mu }_{0}}\in_0}$, where symbols have their usual meaning, are:
A. $[{{L}^{-1}}T]$
B. $[{{L}^{-2}}{{T}^{2}}]$
C. $[{{L}^{2}}{{T}^{-2}}]$
D. $[L{{T}^{-1}}]$
Answer
496.5k+ views
Hint:We are supposed to find the dimensional formula of $\dfrac{1}{{{\mu }_{0}}\in_0}$. For that, we have to identify what ${{\mu }_{0}}$ and $\in_0$ denotes. Further, we can deduce the value from the dimensional formula of these individual elements by finding the degree of dependence of a physical quantity on another. The principle of consistency of two expressions can be used to find the equation relating these two quantities.
We know that ${{\mu }_{0}}$ is the permeability and $\in_0$ is the permittivity of the free space.
Formulas used:
Velocity of light in vacuum$=\dfrac{1}{\sqrt{{{\mu }_{0}}\in_0}}$, where ${{\mu }_{0}}$ is the permeability and $\in_0$ is the permittivity of the free space.
Dimensional formula for velocity = $[L{{T}^{-1}}]$, where $L$ denotes the length or distance and $T$ denotes the time. Here, the time is taken in reverse. This implies the basic formula of velocity, i.e. $\dfrac{displacement}{time}$.
Complete step by step answer:
We know that the Velocity of light in vacuum$=\dfrac{1}{\sqrt{{{\mu }_{0}}\in_0}}$.
i.e. $v=\dfrac{1}{\sqrt{{{\mu }_{0}}\in_0}}$.
Upon squaring, we get ${{v}^{2}}=\dfrac{1}{{{\mu }_{0}}\in_0}$
$\Rightarrow [{{L}^{2}}{{T}^{-2}}]=\dfrac{1}{{{\mu }_{0}}\in_0}$
$\Rightarrow {{[L{{T}^{-1}}]}^{2}}=\dfrac{1}{{{\mu }_{0}}\in_0}$
$\therefore [{{L}^{2}}{{T}^{-2}}]=\dfrac{1}{{{\mu }_{0}}\in_0}$
Therefore, the dimensions of $\dfrac{1}{{{\mu }_{0}}\in_0}$ = $[{{L}^{2}}{{T}^{-2}}]$
Hence, option C is the right choice.
Note:Though this method is widely used, there are few drawbacks for this method. Dimensionless quantities cannot be determined by this method. Constant proportionality cannot be determined by this method. It is not applicable to trigonometric, logarithmic and exponential functions physical quantities which are dependent upon more than three physical quantities, this method will be difficult.
We know that ${{\mu }_{0}}$ is the permeability and $\in_0$ is the permittivity of the free space.
Formulas used:
Velocity of light in vacuum$=\dfrac{1}{\sqrt{{{\mu }_{0}}\in_0}}$, where ${{\mu }_{0}}$ is the permeability and $\in_0$ is the permittivity of the free space.
Dimensional formula for velocity = $[L{{T}^{-1}}]$, where $L$ denotes the length or distance and $T$ denotes the time. Here, the time is taken in reverse. This implies the basic formula of velocity, i.e. $\dfrac{displacement}{time}$.
Complete step by step answer:
We know that the Velocity of light in vacuum$=\dfrac{1}{\sqrt{{{\mu }_{0}}\in_0}}$.
i.e. $v=\dfrac{1}{\sqrt{{{\mu }_{0}}\in_0}}$.
Upon squaring, we get ${{v}^{2}}=\dfrac{1}{{{\mu }_{0}}\in_0}$
$\Rightarrow [{{L}^{2}}{{T}^{-2}}]=\dfrac{1}{{{\mu }_{0}}\in_0}$
$\Rightarrow {{[L{{T}^{-1}}]}^{2}}=\dfrac{1}{{{\mu }_{0}}\in_0}$
$\therefore [{{L}^{2}}{{T}^{-2}}]=\dfrac{1}{{{\mu }_{0}}\in_0}$
Therefore, the dimensions of $\dfrac{1}{{{\mu }_{0}}\in_0}$ = $[{{L}^{2}}{{T}^{-2}}]$
Hence, option C is the right choice.
Note:Though this method is widely used, there are few drawbacks for this method. Dimensionless quantities cannot be determined by this method. Constant proportionality cannot be determined by this method. It is not applicable to trigonometric, logarithmic and exponential functions physical quantities which are dependent upon more than three physical quantities, this method will be difficult.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

In which part of the body the blood is purified oxygenation class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light
