
Derive the relation between torque and moment of inertia?
Answer
445.6k+ views
Hint: TORQUE- Torque is the measure of the force that can cause an object to rotate about an axis. Force is what causes an object to accelerate in linear kinematics, similarly, torque is what causes an angular acceleration. Hence, torque can be defined as the rotational equivalent of linear force.
MOMENT OF INERTIA- The moment of inertia, otherwise known as the mass moment of inertia, angular mass or rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceleration about a rotational axis; similar to how mass determines the force needed for a desired acceleration.
Step-By-Step answer:
Now we will find the relation between torque and moment of inertia-
When a torque acts on a body rotating about an axis, it produces an angular acceleration in the body.
Let, the angular velocity of each particle be \[\omega \]. Then,
Angular acceleration $(\alpha ) = \dfrac{{d\omega }}{{dt}}$
The linear acceleration will depend on their distance ${r_1},{r_2}......{r_n}$ from the axis of rotation.
Consider a particle P of mass ${m_1}$ at a distance ${r_1}$. Let its linear velocity be ${v_1}$.
Linear acceleration of 1st particle = ${a_1} = {r_1}\alpha $
Force acting on 1st particle = ${F_1} = {m_1}{r_1}\alpha $
Moment of force ${F_1}$ about axis of rotation is
${\tau _1} = {F_1}{r_1} = {m_1}{r_1}^2\alpha $
Total torque = $\tau = {\tau _1} + {\tau _2} + .......... + {\tau _n}$
$\tau = {m_1}{r_1}^2\alpha + {m_2}{r_2}^2\alpha + ....... + {m_1}{r_n}^2\alpha $
$\tau = ({m_1}{r_1}^2 + {m_2}{r_2}^2 + {m_3}{r_3}^2 + ....... + {m_n}{r_n}^2)\alpha $
$\tau = (\sum\limits_{}^{} {m{r^2}} )\alpha $
$\tau = I\alpha $, where I is the moment of inertia.
This is the relation between torque and moment of inertia.
NOTE- The torque produced in a body makes the body rotate about an axis, which is called the axis of rotation. In physics, torque is simply the tendency of a force to turn or twist. The formula used to calculate the torque is given by $\tau = F.r.\sin \theta $. Unit of torque is Newton-meter (N-m).
MOMENT OF INERTIA- The moment of inertia, otherwise known as the mass moment of inertia, angular mass or rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceleration about a rotational axis; similar to how mass determines the force needed for a desired acceleration.
Step-By-Step answer:
Now we will find the relation between torque and moment of inertia-
When a torque acts on a body rotating about an axis, it produces an angular acceleration in the body.
Let, the angular velocity of each particle be \[\omega \]. Then,
Angular acceleration $(\alpha ) = \dfrac{{d\omega }}{{dt}}$
The linear acceleration will depend on their distance ${r_1},{r_2}......{r_n}$ from the axis of rotation.
Consider a particle P of mass ${m_1}$ at a distance ${r_1}$. Let its linear velocity be ${v_1}$.
Linear acceleration of 1st particle = ${a_1} = {r_1}\alpha $
Force acting on 1st particle = ${F_1} = {m_1}{r_1}\alpha $
Moment of force ${F_1}$ about axis of rotation is
${\tau _1} = {F_1}{r_1} = {m_1}{r_1}^2\alpha $
Total torque = $\tau = {\tau _1} + {\tau _2} + .......... + {\tau _n}$
$\tau = {m_1}{r_1}^2\alpha + {m_2}{r_2}^2\alpha + ....... + {m_1}{r_n}^2\alpha $
$\tau = ({m_1}{r_1}^2 + {m_2}{r_2}^2 + {m_3}{r_3}^2 + ....... + {m_n}{r_n}^2)\alpha $
$\tau = (\sum\limits_{}^{} {m{r^2}} )\alpha $
$\tau = I\alpha $, where I is the moment of inertia.
This is the relation between torque and moment of inertia.
NOTE- The torque produced in a body makes the body rotate about an axis, which is called the axis of rotation. In physics, torque is simply the tendency of a force to turn or twist. The formula used to calculate the torque is given by $\tau = F.r.\sin \theta $. Unit of torque is Newton-meter (N-m).
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE

What is the function of copulatory pads in the forelimbs class 11 biology CBSE
