
Derive the relation between \[{{K}_{p}}\] and \[{{K}_{c}}\] for a general chemical equilibrium reaction.
Answer
500.7k+ views
Hint: We know that\[{{K}_{p}}\] = The equilibrium constant calculated from the partial pressures of a chemical reaction.
\[{{K}_{c}}\] = The ratio of the equilibrium concentrations of products over the equilibrium concentrations of reactants each raised to the power of their stoichiometric coefficients in a chemical reaction.
Complete step by step answer:
In the question it is given that derive the relation between \[{{K}_{p}}\] and \[{{K}_{c}}\].
Consider the following reversible chemical reaction,
\[aA+bB \leftrightharpoons cC+dD\]
The equilibrium constant for the above reaction should be expressed in terms of the concentration and expressed as follows.
\[{{K}_{c}}=\dfrac{{{[C]}^{c}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}\]
In the above equation, equilibrium is involved between gaseous species, and then the concentrations should be expressed in terms of partial pressures of the gaseous substance involved in the reaction. The equilibrium constant in terms of partial pressures is as follows,
\[{{K}_{p}}=\dfrac{p_{{C}^{c}}\text{ }p_{{D}^{d}}}{p_{{A}^{a}}\text{ }p_{{B}^{b}}}\]
Here \[{{p}_{A}}\], \[{{p}_{B}}\], \[{{p}_{C}}\], \[{{p}_{D}}\] represents the partial pressures of the substance A, B, C and D respectively involved in the reaction. Assume that the gases are ideal, then the ideal gas equation is as follows.
PV = nRT
\[P=\dfrac{nRT}{V}\]
Where P = pressure
n = amount of gas in mol
V = Volume in \[{{m}^{3}}\]
T = temperature in Kelvin
\[\dfrac{n}{V}\] = concentration, C
Thus, at constant temperature, pressure of the gas P is directly proportional to its concentration C,
In general chemical reaction
\[aA+bB \leftrightharpoons cC+dD\]
The equilibrium constant is
\[{{K}_{p}}=\dfrac{p_{{C}^{c}}\text{ }p_{{D}^{d}}}{p_{{A}^{a}}\text{ }p_{{B}^{b}}}\]
Now, P = CRT
Hence,
\[{{p}_{A}}\] = [A] RT, where [A] is the molar concentration of A
In the same way
\[{{p}_{B}}\] = [B] RT
\[{{p}_{C}}\]= [C] RT
\[{{p}_{D}}\] = [D] RT
Here, [B], [C] and [D] are the molar concentration of B, C and D respectively.
Substituting the above values in the expression for \[{{K}_{p}}\]
${{K}_{p}}=\dfrac{[{{([C]RT)}^{c}}\text{ }{{([D]RT)}^{d}}]}{[{{([A]RT)}^{a}}\text{ }{{([B]RT)}^{b}}]}$
$\text{=}\dfrac{{{[C]}^{c}}{{[D]}^{d}}{{(RT)}^{c+d}}}{{{[A]}^{a}}{{[B]}^{b}}{{(RT)}^{a+b}}}\text{ }$
$\text{=}\dfrac{{{[C]}^{c}}{{[D]}^{d}}{{(RT)}^{c+d-a+b}}}{{{[A]}^{a}}{{[B]}^{b}}}$
$\text{=}{{\text{K}}_{\text{c}}}{{(RT)}^{c+d-a+b}}$
$\text{=}{{\text{K}}_{\text{c}}}{{(RT)}^{\Delta n}}$
Here ∆n = (c + d) – (a + b) , means number of moles of gaseous products – number of moles of gaseous reactants in a balanced chemical reaction.
Therefore the relation between \[{{K}_{p}}\] and \[{{K}_{c}}\] is
\[{{\text{K}}_{\text{p}}}\text{= }{{\text{K}}_{\text{c}}}{{(RT)}^{\Delta n}}\]
Note: In a reaction if volume remains constant at equilibrium then \[{{K}_{p}}\] is equal to \[{{K}_{c}}\]
\[{{K}_{p}}\] = \[{{K}_{c}}\]
To get the above relation, an equal number of moles of gas should be present on both sides of the chemical reaction.
\[{{K}_{c}}\] = The ratio of the equilibrium concentrations of products over the equilibrium concentrations of reactants each raised to the power of their stoichiometric coefficients in a chemical reaction.
Complete step by step answer:
In the question it is given that derive the relation between \[{{K}_{p}}\] and \[{{K}_{c}}\].
Consider the following reversible chemical reaction,
\[aA+bB \leftrightharpoons cC+dD\]
The equilibrium constant for the above reaction should be expressed in terms of the concentration and expressed as follows.
\[{{K}_{c}}=\dfrac{{{[C]}^{c}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}\]
In the above equation, equilibrium is involved between gaseous species, and then the concentrations should be expressed in terms of partial pressures of the gaseous substance involved in the reaction. The equilibrium constant in terms of partial pressures is as follows,
\[{{K}_{p}}=\dfrac{p_{{C}^{c}}\text{ }p_{{D}^{d}}}{p_{{A}^{a}}\text{ }p_{{B}^{b}}}\]
Here \[{{p}_{A}}\], \[{{p}_{B}}\], \[{{p}_{C}}\], \[{{p}_{D}}\] represents the partial pressures of the substance A, B, C and D respectively involved in the reaction. Assume that the gases are ideal, then the ideal gas equation is as follows.
PV = nRT
\[P=\dfrac{nRT}{V}\]
Where P = pressure
n = amount of gas in mol
V = Volume in \[{{m}^{3}}\]
T = temperature in Kelvin
\[\dfrac{n}{V}\] = concentration, C
Thus, at constant temperature, pressure of the gas P is directly proportional to its concentration C,
In general chemical reaction
\[aA+bB \leftrightharpoons cC+dD\]
The equilibrium constant is
\[{{K}_{p}}=\dfrac{p_{{C}^{c}}\text{ }p_{{D}^{d}}}{p_{{A}^{a}}\text{ }p_{{B}^{b}}}\]
Now, P = CRT
Hence,
\[{{p}_{A}}\] = [A] RT, where [A] is the molar concentration of A
In the same way
\[{{p}_{B}}\] = [B] RT
\[{{p}_{C}}\]= [C] RT
\[{{p}_{D}}\] = [D] RT
Here, [B], [C] and [D] are the molar concentration of B, C and D respectively.
Substituting the above values in the expression for \[{{K}_{p}}\]
${{K}_{p}}=\dfrac{[{{([C]RT)}^{c}}\text{ }{{([D]RT)}^{d}}]}{[{{([A]RT)}^{a}}\text{ }{{([B]RT)}^{b}}]}$
$\text{=}\dfrac{{{[C]}^{c}}{{[D]}^{d}}{{(RT)}^{c+d}}}{{{[A]}^{a}}{{[B]}^{b}}{{(RT)}^{a+b}}}\text{ }$
$\text{=}\dfrac{{{[C]}^{c}}{{[D]}^{d}}{{(RT)}^{c+d-a+b}}}{{{[A]}^{a}}{{[B]}^{b}}}$
$\text{=}{{\text{K}}_{\text{c}}}{{(RT)}^{c+d-a+b}}$
$\text{=}{{\text{K}}_{\text{c}}}{{(RT)}^{\Delta n}}$
Here ∆n = (c + d) – (a + b) , means number of moles of gaseous products – number of moles of gaseous reactants in a balanced chemical reaction.
Therefore the relation between \[{{K}_{p}}\] and \[{{K}_{c}}\] is
\[{{\text{K}}_{\text{p}}}\text{= }{{\text{K}}_{\text{c}}}{{(RT)}^{\Delta n}}\]
Note: In a reaction if volume remains constant at equilibrium then \[{{K}_{p}}\] is equal to \[{{K}_{c}}\]
\[{{K}_{p}}\] = \[{{K}_{c}}\]
To get the above relation, an equal number of moles of gas should be present on both sides of the chemical reaction.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
