
Column I Column II a. Joule Thomson coefficient p. \[{{\left( \frac{\partial U}{\partial V} \right)}_{T}}=0\] b. Kirchhoff’s Equation q. \[\left( \frac{2a}{RT}-b \right)\] c. Ideal gas r. \[{{\left( \frac{\partial \Delta H}{\partial T} \right)}_{P}}=\Delta Cp\] d. Inversion temperature. s. \[{{\left( \frac{\partial T}{\partial P} \right)}_{H}}=\frac{-{{(\partial H/\partial P)}_{T}}}{Cp}\]
(A) \[(a\to s)(b\to r)(c\to p)(d\to q)\]
(B) \[(a\to r)(b\to s)(c\to p)(d\to q)\]
(C) \[(a\to p)(b\to r)(c\to s)(d\to q)\]
(D) \[(a\to q)(b\to p)(c\to r)(d\to s)\]
Column I Column II | |||
a. | Joule Thomson coefficient | p. | \[{{\left( \frac{\partial U}{\partial V} \right)}_{T}}=0\] |
b. | Kirchhoff’s Equation | q. | \[\left( \frac{2a}{RT}-b \right)\] |
c. | Ideal gas | r. | \[{{\left( \frac{\partial \Delta H}{\partial T} \right)}_{P}}=\Delta Cp\] |
d. | Inversion temperature. | s. | \[{{\left( \frac{\partial T}{\partial P} \right)}_{H}}=\frac{-{{(\partial H/\partial P)}_{T}}}{Cp}\] |
Answer
507.9k+ views
Hint:We have to match the column-I with column-II according to the proper options. All the formulas which are mentioned in the question are related to behavior of gases at different temperature, pressure and volume.
Complete step by step solution:
> The Joule–Thomson effect defines the temperature change of a real gas or a liquid when it is forced through a porous plug while keeping it insulated. So, that no heat is exchanged with the environment.
Joule Thomson coefficient = \[{{\left( \frac{\partial T}{\partial P} \right)}_{H}}=\frac{-{{(\partial H/\partial P)}_{T}}}{Cp}\]
> Kirchhoff equations, named after Gustav Kirchhoff, explains the motion of a rigid body in an ideal fluid. Similarly represent all other torques and forces acting on the body. The integration is done over the fluid-exposed share of the body's surface.
Kirchhoff’s Equation = \[{{\left( \frac{\partial \Delta H}{\partial T} \right)}_{P}}=\Delta Cp\]
> An ideal gas is composed of many randomly moving point particles that are not subject to interparticle interactions. Ideal gas is an assumed gas whose molecules occupy minor space and have no interactions themselves, and which accordingly obeys the all gas laws exactly.
Ideal gas = \[{{\left( \frac{\partial U}{\partial V} \right)}_{T}}=0\]
> The inversion temperature is the critical temperature below which a non-ideal gas that is expanding at constant enthalpy will practice a decrease in temperature, and above which will experience an increase in temperature.
Inversion temperature = \[\left( \frac{2a}{RT}-b \right)\]
> So, the correct option is A,\[(a\to s)(b\to r)(c\to p)(d\to q)\].
Note:The volume of a gas sample is directly proportional to its absolute temperature at constant pressure is called Charles’s law.
> The volume of a gas is inversely proportional to its pressure when temperature is constant is called Boyle’s law.
> Under the same conditions of temperature and pressure, equal volumes of all gases containing the same number of molecules is called Avogadro’s law.
Complete step by step solution:
> The Joule–Thomson effect defines the temperature change of a real gas or a liquid when it is forced through a porous plug while keeping it insulated. So, that no heat is exchanged with the environment.
Joule Thomson coefficient = \[{{\left( \frac{\partial T}{\partial P} \right)}_{H}}=\frac{-{{(\partial H/\partial P)}_{T}}}{Cp}\]
> Kirchhoff equations, named after Gustav Kirchhoff, explains the motion of a rigid body in an ideal fluid. Similarly represent all other torques and forces acting on the body. The integration is done over the fluid-exposed share of the body's surface.
Kirchhoff’s Equation = \[{{\left( \frac{\partial \Delta H}{\partial T} \right)}_{P}}=\Delta Cp\]
> An ideal gas is composed of many randomly moving point particles that are not subject to interparticle interactions. Ideal gas is an assumed gas whose molecules occupy minor space and have no interactions themselves, and which accordingly obeys the all gas laws exactly.
Ideal gas = \[{{\left( \frac{\partial U}{\partial V} \right)}_{T}}=0\]
> The inversion temperature is the critical temperature below which a non-ideal gas that is expanding at constant enthalpy will practice a decrease in temperature, and above which will experience an increase in temperature.
Inversion temperature = \[\left( \frac{2a}{RT}-b \right)\]
> So, the correct option is A,\[(a\to s)(b\to r)(c\to p)(d\to q)\].
Note:The volume of a gas sample is directly proportional to its absolute temperature at constant pressure is called Charles’s law.
> The volume of a gas is inversely proportional to its pressure when temperature is constant is called Boyle’s law.
> Under the same conditions of temperature and pressure, equal volumes of all gases containing the same number of molecules is called Avogadro’s law.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
