
Calculate \[{{K}_{c}}\] and ${{K}_{p}}$ for the given reaction at 295K, if the equilibrium concentrations are $\left[ {{N}_{2}}{{O}_{4}} \right]=0.75\operatorname{M}$ and $\left[ N{{O}_{2}} \right]=0.062\operatorname{M}$, $R=0.08206\operatorname{L}\operatorname{atm}{{\operatorname{K}}^{-1}}{{\operatorname{mol}}^{-1}}$.
Reaction:\[{{N}_{2}}{{O}_{4}}\left( g \right)\rightleftharpoons 2N{{O}_{2}}\left( g \right)\]
Answer
494.1k+ views
Hint: Find \[{{K}_{c}}\] by using the equilibrium concentrations already given in the question. To find ${{K}_{p}}$ use the formula-
\[{{K}_{p}}={{K}_{c}}{{\left( RT \right)}^{\Delta n}}\]
Complete step-by-step answer:
\[{{K}_{c}}\] is known as the equilibrium constant when the concentration of the reactants and products are given in moles per litre. Let’s take an example of the following reaction-
\[aA+bB\rightleftharpoons cC+dD\]
The reaction is in equilibrium, so
\[{{K}_{c}}=\dfrac{{{\left[ C \right]}^{c}}{{\left[ D \right]}^{d}}}{{{\left[ A \right]}^{a}}{{\left[ B \right]}^{b}}}\]
We can define \[{{K}_{c}}\] for the given reaction in the same way,
\[{{K}_{c}}=\dfrac{{{\left[ N{{O}_{2}} \right]}^{2}}}{\left[ {{N}_{2}}{{O}_{4}} \right]}\]
As you can see, the values required for calculating \[{{K}_{c}}\] are already given in the question. Putting the values in their respective places we get,
\[{{K}_{c}}=\dfrac{{{\left[ N{{O}_{2}} \right]}^{2}}}{\left[ {{N}_{2}}{{O}_{4}} \right]}=\dfrac{{{\left( 0.062 \right)}^{2}}}{0.75}=0.00512\]
So, we get \[{{K}_{c}}\] for the given reaction as $5.12\times {{10}^{-3}}$.
Let us move on to find ${{K}_{p}}$. This is also an equilibrium constant but is only defined when the partial pressures of reactants and products are given rather than their molar concentrations. As partial pressure is involved, ${{K}_{p}}$ is most often defined for gaseous reactions. To calculate this constant, we simply substitute the molar concentrations in the formula for \[{{K}_{c}}\] with their respective partial pressures. So,
\[{{K}_{p}}=\dfrac{{{\left[ {{P}_{C}} \right]}^{c}}{{\left[ {{P}_{D}} \right]}^{d}}}{{{\left[ {{P}_{A}} \right]}^{a}}{{\left[ {{P}_{B}} \right]}^{b}}}\]
Where, ${{P}_{A}}$ is the partial pressure of the gaseous reactant “A” and the others are defined in a similar way.
But, here we have not been provided with the individual partial pressures of reactants and products. We have to use \[{{K}_{c}}\] to find ${{K}_{p}}$ and they are related as follows:
\[{{K}_{p}}={{K}_{c}}{{\left( RT \right)}^{\Delta n}}\]
Where, “R” is the universal gas constant; “T” is the temperature at which the equilibrium is maintained and $\Delta n$is the difference in the number of moles of products and reactants.
As mentioned above, the formula for $\Delta n$ is,
\[\Delta n=\text{No}\text{. of moles of products}-\text{No}\text{. of moles of reactants}\]
Applying the above formula, we find $\Delta n$ is 1. The universal gas constant and temperature of the reaction is already given. We can proceed to find the ${{K}_{p}}$ of this reaction.
\[\begin{align}
& {{K}_{p}}={{K}_{c}}{{\left( RT \right)}^{\Delta n}}=0.00512\times \left( 0.08206\times 295 \right) \\
& \Rightarrow {{K}_{p}}=0.1239\approx 0.124 \\
\end{align}\]
Therefore, the ${{K}_{p}}$ of this reaction is $1.24\times {{10}^{-1}}$.
Notes: You should always subtract the number of moles of reactants from the products in order to gain $\Delta n$. This is a common mistake as students sometimes do the opposite and end up with a wrong answer. The value of R should be used in accordance with the units of other given values of the question.
\[{{K}_{p}}={{K}_{c}}{{\left( RT \right)}^{\Delta n}}\]
Complete step-by-step answer:
\[{{K}_{c}}\] is known as the equilibrium constant when the concentration of the reactants and products are given in moles per litre. Let’s take an example of the following reaction-
\[aA+bB\rightleftharpoons cC+dD\]
The reaction is in equilibrium, so
\[{{K}_{c}}=\dfrac{{{\left[ C \right]}^{c}}{{\left[ D \right]}^{d}}}{{{\left[ A \right]}^{a}}{{\left[ B \right]}^{b}}}\]
We can define \[{{K}_{c}}\] for the given reaction in the same way,
\[{{K}_{c}}=\dfrac{{{\left[ N{{O}_{2}} \right]}^{2}}}{\left[ {{N}_{2}}{{O}_{4}} \right]}\]
As you can see, the values required for calculating \[{{K}_{c}}\] are already given in the question. Putting the values in their respective places we get,
\[{{K}_{c}}=\dfrac{{{\left[ N{{O}_{2}} \right]}^{2}}}{\left[ {{N}_{2}}{{O}_{4}} \right]}=\dfrac{{{\left( 0.062 \right)}^{2}}}{0.75}=0.00512\]
So, we get \[{{K}_{c}}\] for the given reaction as $5.12\times {{10}^{-3}}$.
Let us move on to find ${{K}_{p}}$. This is also an equilibrium constant but is only defined when the partial pressures of reactants and products are given rather than their molar concentrations. As partial pressure is involved, ${{K}_{p}}$ is most often defined for gaseous reactions. To calculate this constant, we simply substitute the molar concentrations in the formula for \[{{K}_{c}}\] with their respective partial pressures. So,
\[{{K}_{p}}=\dfrac{{{\left[ {{P}_{C}} \right]}^{c}}{{\left[ {{P}_{D}} \right]}^{d}}}{{{\left[ {{P}_{A}} \right]}^{a}}{{\left[ {{P}_{B}} \right]}^{b}}}\]
Where, ${{P}_{A}}$ is the partial pressure of the gaseous reactant “A” and the others are defined in a similar way.
But, here we have not been provided with the individual partial pressures of reactants and products. We have to use \[{{K}_{c}}\] to find ${{K}_{p}}$ and they are related as follows:
\[{{K}_{p}}={{K}_{c}}{{\left( RT \right)}^{\Delta n}}\]
Where, “R” is the universal gas constant; “T” is the temperature at which the equilibrium is maintained and $\Delta n$is the difference in the number of moles of products and reactants.
As mentioned above, the formula for $\Delta n$ is,
\[\Delta n=\text{No}\text{. of moles of products}-\text{No}\text{. of moles of reactants}\]
Applying the above formula, we find $\Delta n$ is 1. The universal gas constant and temperature of the reaction is already given. We can proceed to find the ${{K}_{p}}$ of this reaction.
\[\begin{align}
& {{K}_{p}}={{K}_{c}}{{\left( RT \right)}^{\Delta n}}=0.00512\times \left( 0.08206\times 295 \right) \\
& \Rightarrow {{K}_{p}}=0.1239\approx 0.124 \\
\end{align}\]
Therefore, the ${{K}_{p}}$ of this reaction is $1.24\times {{10}^{-1}}$.
Notes: You should always subtract the number of moles of reactants from the products in order to gain $\Delta n$. This is a common mistake as students sometimes do the opposite and end up with a wrong answer. The value of R should be used in accordance with the units of other given values of the question.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
