
An NPN transistor is used in common emitter configuration as an amplifier with 1KOhm of load resistance. A signal voltage of 10 mV is applied across the base-emitter. This produces $3mA$ change in the collector current and $15\mu A$ change in the base current of the amplifier. The input resistance and voltage gain are:
A) $0.33k\Omega ,1.5$
B) $0.67k\Omega ,200$
C) $0.33k\Omega ,300$
D) $0.67k\Omega ,300$
Answer
518.1k+ views
Hint:Voltage gain is defined as the ratio of the output voltage to the input voltage. The input resistance is the ratio of change in input voltage to change in input current.
Complete step by step answer:
So we are given a NPN transistor in common emitter mode, the input resistance can be calculated if we know the change in input current when an input voltage is applied. So the input resistance is,
${{\text{R}}_{\text{i}}}=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{i}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{i}}}}$
${{R}_{i}}=\dfrac{10\times {{10}^{-3}}}{15\times {{10}^{-6}}}$
$\therefore {{\text{R}}_{\text{i}}}=0.67K\Omega $
So the input resistance is ${{\text{R}}_{\text{i}}}=0.67K\Omega $.
The voltage gain is defined as the ratio of change in the output voltage to the change in input voltage. We know that $\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{i}}}=\text{10mV}$, in order to calculate the change in output voltage we multiply the change in change in output current with the load resistance. So we can write,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}=\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{o}}}{{\text{R}}_{\text{L}}}$
Substituting the values of change in output voltage and load resistance, we get,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}=\left( 3\times {{10}^{-3}} \right)\left( 1000 \right)$
$\therefore \text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}=\text{3V}$
So the voltage gain is given by,
${{\text{A}}_{\text{v}}}=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{i}}}}$
${{\text{A}}_{\text{v}}}=\dfrac{3}{10\times {{10}^{-3}}}$
$\therefore {{\text{A}}_{\text{v}}}=300$
So the voltage gain for the transistor is ${{\text{A}}_{\text{v}}}=300$.
So the answer to the question is option (D)- $0.67k\Omega ,300$
Note:
The current gain of a transistor is defined as the ratio of output current to the input current. It is denoted by the Greek letter $\text{ }\!\!\beta\!\!\text{ }$ for common emitter configuration and $\text{ }\!\!\alpha\!\!\text{ }$ for common base configuration.
The current gain in the common base configuration is defined by,
$\text{ }\!\!\alpha\!\!\text{ }=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{e}}}}$
Where,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}$ is the change in collector current.
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{e}}$ is the change in emitter current.
The current gain in the common emitter configuration is defined by,
$\text{ }\!\!\beta\!\!\text{ }=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{b}}}}$
Where,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}$ is the change in collector current.
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{b}}}$ is the change in emitter current.
Complete step by step answer:
So we are given a NPN transistor in common emitter mode, the input resistance can be calculated if we know the change in input current when an input voltage is applied. So the input resistance is,
${{\text{R}}_{\text{i}}}=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{i}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{i}}}}$
${{R}_{i}}=\dfrac{10\times {{10}^{-3}}}{15\times {{10}^{-6}}}$
$\therefore {{\text{R}}_{\text{i}}}=0.67K\Omega $
So the input resistance is ${{\text{R}}_{\text{i}}}=0.67K\Omega $.
The voltage gain is defined as the ratio of change in the output voltage to the change in input voltage. We know that $\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{i}}}=\text{10mV}$, in order to calculate the change in output voltage we multiply the change in change in output current with the load resistance. So we can write,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}=\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{o}}}{{\text{R}}_{\text{L}}}$
Substituting the values of change in output voltage and load resistance, we get,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}=\left( 3\times {{10}^{-3}} \right)\left( 1000 \right)$
$\therefore \text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}=\text{3V}$
So the voltage gain is given by,
${{\text{A}}_{\text{v}}}=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{i}}}}$
${{\text{A}}_{\text{v}}}=\dfrac{3}{10\times {{10}^{-3}}}$
$\therefore {{\text{A}}_{\text{v}}}=300$
So the voltage gain for the transistor is ${{\text{A}}_{\text{v}}}=300$.
So the answer to the question is option (D)- $0.67k\Omega ,300$
Note:
The current gain of a transistor is defined as the ratio of output current to the input current. It is denoted by the Greek letter $\text{ }\!\!\beta\!\!\text{ }$ for common emitter configuration and $\text{ }\!\!\alpha\!\!\text{ }$ for common base configuration.
The current gain in the common base configuration is defined by,
$\text{ }\!\!\alpha\!\!\text{ }=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{e}}}}$
Where,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}$ is the change in collector current.
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{e}}$ is the change in emitter current.
The current gain in the common emitter configuration is defined by,
$\text{ }\!\!\beta\!\!\text{ }=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{b}}}}$
Where,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}$ is the change in collector current.
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{b}}}$ is the change in emitter current.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
