
An NPN transistor is used in common emitter configuration as an amplifier with 1KOhm of load resistance. A signal voltage of 10 mV is applied across the base-emitter. This produces $3mA$ change in the collector current and $15\mu A$ change in the base current of the amplifier. The input resistance and voltage gain are:
A) $0.33k\Omega ,1.5$
B) $0.67k\Omega ,200$
C) $0.33k\Omega ,300$
D) $0.67k\Omega ,300$
Answer
505.2k+ views
Hint:Voltage gain is defined as the ratio of the output voltage to the input voltage. The input resistance is the ratio of change in input voltage to change in input current.
Complete step by step answer:
So we are given a NPN transistor in common emitter mode, the input resistance can be calculated if we know the change in input current when an input voltage is applied. So the input resistance is,
${{\text{R}}_{\text{i}}}=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{i}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{i}}}}$
${{R}_{i}}=\dfrac{10\times {{10}^{-3}}}{15\times {{10}^{-6}}}$
$\therefore {{\text{R}}_{\text{i}}}=0.67K\Omega $
So the input resistance is ${{\text{R}}_{\text{i}}}=0.67K\Omega $.
The voltage gain is defined as the ratio of change in the output voltage to the change in input voltage. We know that $\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{i}}}=\text{10mV}$, in order to calculate the change in output voltage we multiply the change in change in output current with the load resistance. So we can write,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}=\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{o}}}{{\text{R}}_{\text{L}}}$
Substituting the values of change in output voltage and load resistance, we get,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}=\left( 3\times {{10}^{-3}} \right)\left( 1000 \right)$
$\therefore \text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}=\text{3V}$
So the voltage gain is given by,
${{\text{A}}_{\text{v}}}=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{i}}}}$
${{\text{A}}_{\text{v}}}=\dfrac{3}{10\times {{10}^{-3}}}$
$\therefore {{\text{A}}_{\text{v}}}=300$
So the voltage gain for the transistor is ${{\text{A}}_{\text{v}}}=300$.
So the answer to the question is option (D)- $0.67k\Omega ,300$
Note:
The current gain of a transistor is defined as the ratio of output current to the input current. It is denoted by the Greek letter $\text{ }\!\!\beta\!\!\text{ }$ for common emitter configuration and $\text{ }\!\!\alpha\!\!\text{ }$ for common base configuration.
The current gain in the common base configuration is defined by,
$\text{ }\!\!\alpha\!\!\text{ }=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{e}}}}$
Where,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}$ is the change in collector current.
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{e}}$ is the change in emitter current.
The current gain in the common emitter configuration is defined by,
$\text{ }\!\!\beta\!\!\text{ }=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{b}}}}$
Where,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}$ is the change in collector current.
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{b}}}$ is the change in emitter current.
Complete step by step answer:
So we are given a NPN transistor in common emitter mode, the input resistance can be calculated if we know the change in input current when an input voltage is applied. So the input resistance is,
${{\text{R}}_{\text{i}}}=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{i}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{i}}}}$
${{R}_{i}}=\dfrac{10\times {{10}^{-3}}}{15\times {{10}^{-6}}}$
$\therefore {{\text{R}}_{\text{i}}}=0.67K\Omega $
So the input resistance is ${{\text{R}}_{\text{i}}}=0.67K\Omega $.
The voltage gain is defined as the ratio of change in the output voltage to the change in input voltage. We know that $\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{i}}}=\text{10mV}$, in order to calculate the change in output voltage we multiply the change in change in output current with the load resistance. So we can write,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}=\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{o}}}{{\text{R}}_{\text{L}}}$
Substituting the values of change in output voltage and load resistance, we get,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}=\left( 3\times {{10}^{-3}} \right)\left( 1000 \right)$
$\therefore \text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}=\text{3V}$
So the voltage gain is given by,
${{\text{A}}_{\text{v}}}=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{o}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{V}}_{\text{i}}}}$
${{\text{A}}_{\text{v}}}=\dfrac{3}{10\times {{10}^{-3}}}$
$\therefore {{\text{A}}_{\text{v}}}=300$
So the voltage gain for the transistor is ${{\text{A}}_{\text{v}}}=300$.
So the answer to the question is option (D)- $0.67k\Omega ,300$
Note:
The current gain of a transistor is defined as the ratio of output current to the input current. It is denoted by the Greek letter $\text{ }\!\!\beta\!\!\text{ }$ for common emitter configuration and $\text{ }\!\!\alpha\!\!\text{ }$ for common base configuration.
The current gain in the common base configuration is defined by,
$\text{ }\!\!\alpha\!\!\text{ }=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{e}}}}$
Where,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}$ is the change in collector current.
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{e}}$ is the change in emitter current.
The current gain in the common emitter configuration is defined by,
$\text{ }\!\!\beta\!\!\text{ }=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}}{\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{b}}}}$
Where,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{c}}}$ is the change in collector current.
$\text{ }\!\!\Delta\!\!\text{ }{{\text{I}}_{\text{b}}}$ is the change in emitter current.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Express the following as a fraction and simplify a class 7 maths CBSE

Trending doubts
Franz thinks Will they make them sing in German even class 12 english CBSE

Draw a diagram of a flower and name the parts class 12 biology ICSE

The amine A when treated with nitrous acid gives yellow class 12 chemistry CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

The speed of light will be minimum while passing through class 12 physics CBSE

For the angle of minimum deviation of a prism to be class 12 physics CBSE
