
An electric dipole has a fixed dipole moment $\overrightarrow p $, which makes angle $\theta $ with respect to x-axis. When subjected to an electric field${\overrightarrow E _1} = E\widehat i$, it experiences a torque $\overrightarrow {{T_1}} = \tau \widehat k$. When subjected to another electric field $\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j$, it experiences torque $\overrightarrow {{T_2}} = - \overrightarrow {{T_1}} $. The angle $\theta $ is:
(a) 90$^\circ $
(b) 30$^\circ $
(c) 45$^\circ $
(d) 60$^\circ $
Answer
538.2k+ views
Hint: Use the given Electric field vectors and resultant Torque to find the components of dipole moment. This can then be used to find the angle it makes with x-axis.
Formula used:
Torque:
$\overrightarrow T = \overrightarrow p \times \overrightarrow E $ …… (1)
where,
$\overrightarrow p $ is the dipole moment.
$\overrightarrow E $ is the Electric field.
Angle made by vector with x-axis:
$\theta = {\tan ^{ - 1}}\dfrac{{{p_y}}}{{{p_x}}}$ …… (2)
where,
${p_y}$ is the y component of the vector $\overrightarrow p $
${p_x}$ is the x component of the vector $\overrightarrow p $
Step-by-step answer:
Given:
1. Electric field (1) ${\overrightarrow E _1} = E\widehat i$
2. Torque (1) $\overrightarrow {{T_1}} = \tau \widehat k$
3. Electric field (2) $\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j$
4. Torque (2) $\overrightarrow {{T_2}} = - \overrightarrow {{T_1}} $
To find: The angle $\overrightarrow p $makes with x-axis.
Step 1 of 5:
Let $\overrightarrow p $ be the following:
\[\overrightarrow p = {p_x}\widehat i + {p_y}\widehat j\]
Step 2 of 5:
Use eq (1) to find Torque (1):
$\tau \widehat k = ({p_x}\widehat i + {p_y}\widehat j) \times (E\widehat i)$
$
\tau \widehat k = ({p_x}\widehat i) \times (E\widehat i) + ({p_y}\widehat j) \times (E\widehat i) \\
\tau \widehat k = {p_y}E(\widehat j \times \widehat i) \\
\tau \widehat k = - {p_y}E\widehat k \\
$
Compare the magnitudes of unit vectors on LHS and RHS:
$\tau = - {p_y}E$
Rearrange to find ${p_y}$:
${p_y} = - \dfrac{\tau }{E}$ ……(3)
Step 3 of 5:
Find Electric field (2):
$\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j$
$\overrightarrow {{E_2}} = \sqrt 3 E\widehat j$
Find Torque (2):
$
\overrightarrow {{T_2}} = - \overrightarrow {{T_1}} \\
\overrightarrow {{T_2}} = - \tau \widehat k \\
$
Step 4 of 5:
Use eq (1) to find Torque (2):
$ - \tau \widehat k = ({p_x}\widehat i + {p_y}\widehat j) \times (\sqrt 3 E\widehat j)$
$
- \tau \widehat k = ({p_x}\widehat i) \times (\sqrt 3 E\widehat j) + ({p_y}\widehat j) \times (\sqrt 3 E\widehat j) \\
- \tau \widehat k = \sqrt 3 {p_x}E(\widehat i \times \widehat j) \\
\tau \widehat k = - \sqrt 3 {p_x}E\widehat k \\
$
Compare the magnitudes of unit vectors on LHS and RHS:
$\tau = - \sqrt 3 {p_x}E$
Rearrange to find ${p_x}$:
${p_x} = - \dfrac{\tau }{{\sqrt 3 E}}$ …… (4)
Step 5 of 5:
Use eq (2) to find the angle $\theta $ made by $\overrightarrow p $ with the x-axis:
$\theta = {\tan ^{ - 1}}\dfrac{{{p_y}}}{{{p_x}}}$
${p_y}$ and ${p_x}$are given in eq (4) and (3) respectively:
\[
\theta = {\tan ^{ - 1}}\dfrac{{(\dfrac{{ - \tau }}{E})}}{{(\dfrac{{ - \tau }}{{\sqrt 3 E}})}} \\
\theta = {\tan ^{ - 1}}\sqrt 3 \\
\theta = 60^\circ \\
\]
Correct Answer:
The angle $\theta $ is: (d) 60$^\circ $
Additional Information: In dipole moment we approximate charge to be separated by very small and finite distance which lead us to calculate torque and force acting on the dipole altogether. Otherwise, we would have to use coulomb's law for each individual charge of dipole and superposition of fields produced by them.
Note: In questions like these, Assume a general expression for $\overrightarrow p $ (dipole moment). Obtain the expressions for $\overrightarrow T $. Compare the magnitudes of unit vectors to find the x and y components of $\overrightarrow p $. This can be used to find the angle $\theta $.
Formula used:
Torque:
$\overrightarrow T = \overrightarrow p \times \overrightarrow E $ …… (1)
where,
$\overrightarrow p $ is the dipole moment.
$\overrightarrow E $ is the Electric field.
Angle made by vector with x-axis:
$\theta = {\tan ^{ - 1}}\dfrac{{{p_y}}}{{{p_x}}}$ …… (2)
where,
${p_y}$ is the y component of the vector $\overrightarrow p $
${p_x}$ is the x component of the vector $\overrightarrow p $
Step-by-step answer:
Given:
1. Electric field (1) ${\overrightarrow E _1} = E\widehat i$
2. Torque (1) $\overrightarrow {{T_1}} = \tau \widehat k$
3. Electric field (2) $\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j$
4. Torque (2) $\overrightarrow {{T_2}} = - \overrightarrow {{T_1}} $
To find: The angle $\overrightarrow p $makes with x-axis.
Step 1 of 5:
Let $\overrightarrow p $ be the following:
\[\overrightarrow p = {p_x}\widehat i + {p_y}\widehat j\]
Step 2 of 5:
Use eq (1) to find Torque (1):
$\tau \widehat k = ({p_x}\widehat i + {p_y}\widehat j) \times (E\widehat i)$
$
\tau \widehat k = ({p_x}\widehat i) \times (E\widehat i) + ({p_y}\widehat j) \times (E\widehat i) \\
\tau \widehat k = {p_y}E(\widehat j \times \widehat i) \\
\tau \widehat k = - {p_y}E\widehat k \\
$
Compare the magnitudes of unit vectors on LHS and RHS:
$\tau = - {p_y}E$
Rearrange to find ${p_y}$:
${p_y} = - \dfrac{\tau }{E}$ ……(3)
Step 3 of 5:
Find Electric field (2):
$\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j$
$\overrightarrow {{E_2}} = \sqrt 3 E\widehat j$
Find Torque (2):
$
\overrightarrow {{T_2}} = - \overrightarrow {{T_1}} \\
\overrightarrow {{T_2}} = - \tau \widehat k \\
$
Step 4 of 5:
Use eq (1) to find Torque (2):
$ - \tau \widehat k = ({p_x}\widehat i + {p_y}\widehat j) \times (\sqrt 3 E\widehat j)$
$
- \tau \widehat k = ({p_x}\widehat i) \times (\sqrt 3 E\widehat j) + ({p_y}\widehat j) \times (\sqrt 3 E\widehat j) \\
- \tau \widehat k = \sqrt 3 {p_x}E(\widehat i \times \widehat j) \\
\tau \widehat k = - \sqrt 3 {p_x}E\widehat k \\
$
Compare the magnitudes of unit vectors on LHS and RHS:
$\tau = - \sqrt 3 {p_x}E$
Rearrange to find ${p_x}$:
${p_x} = - \dfrac{\tau }{{\sqrt 3 E}}$ …… (4)
Step 5 of 5:
Use eq (2) to find the angle $\theta $ made by $\overrightarrow p $ with the x-axis:
$\theta = {\tan ^{ - 1}}\dfrac{{{p_y}}}{{{p_x}}}$
${p_y}$ and ${p_x}$are given in eq (4) and (3) respectively:
\[
\theta = {\tan ^{ - 1}}\dfrac{{(\dfrac{{ - \tau }}{E})}}{{(\dfrac{{ - \tau }}{{\sqrt 3 E}})}} \\
\theta = {\tan ^{ - 1}}\sqrt 3 \\
\theta = 60^\circ \\
\]
Correct Answer:
The angle $\theta $ is: (d) 60$^\circ $
Additional Information: In dipole moment we approximate charge to be separated by very small and finite distance which lead us to calculate torque and force acting on the dipole altogether. Otherwise, we would have to use coulomb's law for each individual charge of dipole and superposition of fields produced by them.
Note: In questions like these, Assume a general expression for $\overrightarrow p $ (dipole moment). Obtain the expressions for $\overrightarrow T $. Compare the magnitudes of unit vectors to find the x and y components of $\overrightarrow p $. This can be used to find the angle $\theta $.
Recently Updated Pages
JEE Main 2025-26 Mock Test: Complex Numbers & Quadratic Equations

JEE Main 2025-26 Mock Test: Matrices and Determinants

NCERT Solutions For Class 12 Maths Three Dimensional Geometry Exercise 11.2

NCERT Solutions For Class 11 Maths Sets Exercise 1.4

NCERT Solutions For Class 11 Maths Miscellaneous Exercise - Limits and Derivatives

NCERT Solutions For Class 12 Maths Integrals Exercise 7.9

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
