Answer
Verified
479.1k+ views
Hint: Use the given Electric field vectors and resultant Torque to find the components of dipole moment. This can then be used to find the angle it makes with x-axis.
Formula used:
Torque:
$\overrightarrow T = \overrightarrow p \times \overrightarrow E $ …… (1)
where,
$\overrightarrow p $ is the dipole moment.
$\overrightarrow E $ is the Electric field.
Angle made by vector with x-axis:
$\theta = {\tan ^{ - 1}}\dfrac{{{p_y}}}{{{p_x}}}$ …… (2)
where,
${p_y}$ is the y component of the vector $\overrightarrow p $
${p_x}$ is the x component of the vector $\overrightarrow p $
Step-by-step answer:
Given:
1. Electric field (1) ${\overrightarrow E _1} = E\widehat i$
2. Torque (1) $\overrightarrow {{T_1}} = \tau \widehat k$
3. Electric field (2) $\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j$
4. Torque (2) $\overrightarrow {{T_2}} = - \overrightarrow {{T_1}} $
To find: The angle $\overrightarrow p $makes with x-axis.
Step 1 of 5:
Let $\overrightarrow p $ be the following:
\[\overrightarrow p = {p_x}\widehat i + {p_y}\widehat j\]
Step 2 of 5:
Use eq (1) to find Torque (1):
$\tau \widehat k = ({p_x}\widehat i + {p_y}\widehat j) \times (E\widehat i)$
$
\tau \widehat k = ({p_x}\widehat i) \times (E\widehat i) + ({p_y}\widehat j) \times (E\widehat i) \\
\tau \widehat k = {p_y}E(\widehat j \times \widehat i) \\
\tau \widehat k = - {p_y}E\widehat k \\
$
Compare the magnitudes of unit vectors on LHS and RHS:
$\tau = - {p_y}E$
Rearrange to find ${p_y}$:
${p_y} = - \dfrac{\tau }{E}$ ……(3)
Step 3 of 5:
Find Electric field (2):
$\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j$
$\overrightarrow {{E_2}} = \sqrt 3 E\widehat j$
Find Torque (2):
$
\overrightarrow {{T_2}} = - \overrightarrow {{T_1}} \\
\overrightarrow {{T_2}} = - \tau \widehat k \\
$
Step 4 of 5:
Use eq (1) to find Torque (2):
$ - \tau \widehat k = ({p_x}\widehat i + {p_y}\widehat j) \times (\sqrt 3 E\widehat j)$
$
- \tau \widehat k = ({p_x}\widehat i) \times (\sqrt 3 E\widehat j) + ({p_y}\widehat j) \times (\sqrt 3 E\widehat j) \\
- \tau \widehat k = \sqrt 3 {p_x}E(\widehat i \times \widehat j) \\
\tau \widehat k = - \sqrt 3 {p_x}E\widehat k \\
$
Compare the magnitudes of unit vectors on LHS and RHS:
$\tau = - \sqrt 3 {p_x}E$
Rearrange to find ${p_x}$:
${p_x} = - \dfrac{\tau }{{\sqrt 3 E}}$ …… (4)
Step 5 of 5:
Use eq (2) to find the angle $\theta $ made by $\overrightarrow p $ with the x-axis:
$\theta = {\tan ^{ - 1}}\dfrac{{{p_y}}}{{{p_x}}}$
${p_y}$ and ${p_x}$are given in eq (4) and (3) respectively:
\[
\theta = {\tan ^{ - 1}}\dfrac{{(\dfrac{{ - \tau }}{E})}}{{(\dfrac{{ - \tau }}{{\sqrt 3 E}})}} \\
\theta = {\tan ^{ - 1}}\sqrt 3 \\
\theta = 60^\circ \\
\]
Correct Answer:
The angle $\theta $ is: (d) 60$^\circ $
Additional Information: In dipole moment we approximate charge to be separated by very small and finite distance which lead us to calculate torque and force acting on the dipole altogether. Otherwise, we would have to use coulomb's law for each individual charge of dipole and superposition of fields produced by them.
Note: In questions like these, Assume a general expression for $\overrightarrow p $ (dipole moment). Obtain the expressions for $\overrightarrow T $. Compare the magnitudes of unit vectors to find the x and y components of $\overrightarrow p $. This can be used to find the angle $\theta $.
Formula used:
Torque:
$\overrightarrow T = \overrightarrow p \times \overrightarrow E $ …… (1)
where,
$\overrightarrow p $ is the dipole moment.
$\overrightarrow E $ is the Electric field.
Angle made by vector with x-axis:
$\theta = {\tan ^{ - 1}}\dfrac{{{p_y}}}{{{p_x}}}$ …… (2)
where,
${p_y}$ is the y component of the vector $\overrightarrow p $
${p_x}$ is the x component of the vector $\overrightarrow p $
Step-by-step answer:
Given:
1. Electric field (1) ${\overrightarrow E _1} = E\widehat i$
2. Torque (1) $\overrightarrow {{T_1}} = \tau \widehat k$
3. Electric field (2) $\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j$
4. Torque (2) $\overrightarrow {{T_2}} = - \overrightarrow {{T_1}} $
To find: The angle $\overrightarrow p $makes with x-axis.
Step 1 of 5:
Let $\overrightarrow p $ be the following:
\[\overrightarrow p = {p_x}\widehat i + {p_y}\widehat j\]
Step 2 of 5:
Use eq (1) to find Torque (1):
$\tau \widehat k = ({p_x}\widehat i + {p_y}\widehat j) \times (E\widehat i)$
$
\tau \widehat k = ({p_x}\widehat i) \times (E\widehat i) + ({p_y}\widehat j) \times (E\widehat i) \\
\tau \widehat k = {p_y}E(\widehat j \times \widehat i) \\
\tau \widehat k = - {p_y}E\widehat k \\
$
Compare the magnitudes of unit vectors on LHS and RHS:
$\tau = - {p_y}E$
Rearrange to find ${p_y}$:
${p_y} = - \dfrac{\tau }{E}$ ……(3)
Step 3 of 5:
Find Electric field (2):
$\overrightarrow {{E_2}} = \sqrt 3 {E_1}\widehat j$
$\overrightarrow {{E_2}} = \sqrt 3 E\widehat j$
Find Torque (2):
$
\overrightarrow {{T_2}} = - \overrightarrow {{T_1}} \\
\overrightarrow {{T_2}} = - \tau \widehat k \\
$
Step 4 of 5:
Use eq (1) to find Torque (2):
$ - \tau \widehat k = ({p_x}\widehat i + {p_y}\widehat j) \times (\sqrt 3 E\widehat j)$
$
- \tau \widehat k = ({p_x}\widehat i) \times (\sqrt 3 E\widehat j) + ({p_y}\widehat j) \times (\sqrt 3 E\widehat j) \\
- \tau \widehat k = \sqrt 3 {p_x}E(\widehat i \times \widehat j) \\
\tau \widehat k = - \sqrt 3 {p_x}E\widehat k \\
$
Compare the magnitudes of unit vectors on LHS and RHS:
$\tau = - \sqrt 3 {p_x}E$
Rearrange to find ${p_x}$:
${p_x} = - \dfrac{\tau }{{\sqrt 3 E}}$ …… (4)
Step 5 of 5:
Use eq (2) to find the angle $\theta $ made by $\overrightarrow p $ with the x-axis:
$\theta = {\tan ^{ - 1}}\dfrac{{{p_y}}}{{{p_x}}}$
${p_y}$ and ${p_x}$are given in eq (4) and (3) respectively:
\[
\theta = {\tan ^{ - 1}}\dfrac{{(\dfrac{{ - \tau }}{E})}}{{(\dfrac{{ - \tau }}{{\sqrt 3 E}})}} \\
\theta = {\tan ^{ - 1}}\sqrt 3 \\
\theta = 60^\circ \\
\]
Correct Answer:
The angle $\theta $ is: (d) 60$^\circ $
Additional Information: In dipole moment we approximate charge to be separated by very small and finite distance which lead us to calculate torque and force acting on the dipole altogether. Otherwise, we would have to use coulomb's law for each individual charge of dipole and superposition of fields produced by them.
Note: In questions like these, Assume a general expression for $\overrightarrow p $ (dipole moment). Obtain the expressions for $\overrightarrow T $. Compare the magnitudes of unit vectors to find the x and y components of $\overrightarrow p $. This can be used to find the angle $\theta $.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Trending doubts
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Give 10 examples of unisexual and bisexual flowers
Why is the cell called the structural and functional class 12 biology CBSE
Why dont two magnetic lines of force intersect with class 12 physics CBSE
How many sp2 and sp hybridized carbon atoms are present class 12 chemistry CBSE