
When an AC source is connected to an ideal inductor, show that the average power supplied by the source over a complete cycle is zero.
Answer
438.6k+ views
Hint: Inductor: An inductor is a passive electronic component which is capable of storing electrical energy in the form of magnetic energy. Basically, it uses a conductor that is wound into a coil, and when electricity flows into the coil from left to right this will generate the magnetic fields in the clockwise direction.
Complete step-by-step solution:
The average power supplied by the source over a complete cycle is given by
$ \Rightarrow P = VI\cos \phi $ …(1)
Here,
V=voltage
I=current
$\cos \phi $=power factor
For pure inductive circuit, the phase difference between current and voltage is $\dfrac{\pi }{2}$
$ \Rightarrow \cos \phi = \cos \dfrac{\pi }{2}$
$\therefore \cos \dfrac{\pi }{2} = 0$
$ \Rightarrow \cos \phi = 0$
Put the value in equation 1
$ \Rightarrow P = VI\cos \phi $
$ \Rightarrow P = V \times I \times 0$
$ \Rightarrow P = 0$
So the average power dissipated is Zero (0).
Note: One of the principal applications of RMS values is with alternating current and voltages. ROOT MEAN SQUARE VALUE. The value of an AC voltage is continually changing from zero up to the positive peak, through zero to the negative peak and back to zero again. 220V is the RMS value of domestic AC electric supply. This can be verified using a multimeter. Multimeter always shows an RMS value of AC voltages.
Complete step-by-step solution:
The average power supplied by the source over a complete cycle is given by
$ \Rightarrow P = VI\cos \phi $ …(1)
Here,
V=voltage
I=current
$\cos \phi $=power factor
For pure inductive circuit, the phase difference between current and voltage is $\dfrac{\pi }{2}$
$ \Rightarrow \cos \phi = \cos \dfrac{\pi }{2}$
$\therefore \cos \dfrac{\pi }{2} = 0$
$ \Rightarrow \cos \phi = 0$
Put the value in equation 1
$ \Rightarrow P = VI\cos \phi $
$ \Rightarrow P = V \times I \times 0$
$ \Rightarrow P = 0$
So the average power dissipated is Zero (0).
Note: One of the principal applications of RMS values is with alternating current and voltages. ROOT MEAN SQUARE VALUE. The value of an AC voltage is continually changing from zero up to the positive peak, through zero to the negative peak and back to zero again. 220V is the RMS value of domestic AC electric supply. This can be verified using a multimeter. Multimeter always shows an RMS value of AC voltages.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
