Answer
Verified
484.8k+ views
Hint: To comment on proportionality, we have to develop the expression of corresponding variable in terms of other for example in this question, to find the relation between power and velocity, we start with general formula of power i.e. is multiplication of force and velocity later on we used other definitions and formulas of Force, momentum, mass and equation of continuity to reach the final result.
Complete step-by-step answer:
Let’s us consider, \[{\text{v}}\]= wind speed
And we know that power is multiplication of force(F) and velocity(v)
Power, \[{\text{P = F}} \times {\text{v}}\] . . . . . . . . . . . . .(1)
We can write the force expression as rate of change of momentum(P) per unit time
Force, \[{\text{F}} = \dfrac{{d{\text{P}}}}{{dt}}\]
Momentum(P) is defined as multiplication of mass(m) and velocity(v)
\[{\text{F}} = \dfrac{{d{\text{P}}}}{{dt}} = \dfrac{{d\left( {{\text{m}}{\text{.v}}} \right)}}{{dt}}\]
On differentiation using $\dfrac{{du.v}}{{dt}} = u\dfrac{{dv}}{{dt}} + v\dfrac{{du}}{{dt}}$
\[ \Rightarrow {\text{F}} = {\text{m}}{\text{.}}\dfrac{{d\left( {\text{v}} \right)}}{{dt}} + {\text{v}}{\text{.}}\dfrac{{d\left( {\text{m}} \right)}}{{dt}}\]
And \[\dfrac{{d\left( {\text{v}} \right)}}{{dt}} = 0\] because it is given wind velocity v is constant hence its differentiation will be zero.
So, \[{\text{F}} = {\text{v}}{\text{.}}\dfrac{{d\left( {\text{m}} \right)}}{{dt}}\]
We can write mass is equal to density (ρ) multiplied by Volume(V) i.e. m = ρ.V
\[ \Rightarrow {\text{F}} = {\text{v}}{\text{.}}\dfrac{{d\left( \rho {\text{.V}} \right)}}{{dt}}\]
where, ρ= density of air which is constant so we can take it out from differentiation
V= volume
⇒F = v.ρ\[\dfrac{{d\left( {\text{V}} \right)}}{{dt}}\] ………..(2)
From the equation of continuity,
\[ \Rightarrow \dfrac{{d{\text{V}}}}{{dt}} = \] Area × velocity
This can be written as
\[ \Rightarrow \dfrac{{d{\text{V}}}}{{dt}} = {\text{A}}{\text{.v}}\]
On putting \[\dfrac{{d{\text{V}}}}{{dt}} = {\text{A}}{\text{.v}}\] in equation (2),
⇒F = v.ρ.A.v
On further solving
⇒F = ρ.A\[{{\text{v}}^2}\]
Substitute value of F in equation (1), we will get
⇒P= ρA\[{{\text{v}}^3}\]
Hence we can say
⇒ P ∝ \[{{\text{v}}^3}\]
Therefore, the correct option is C.
Note- In this particular question we should know that for incompressible fluids we can apply continuity equation.
Yes, air comes under a compressible fluid. But we can consider air as incompressible in duct systems because when pressure changes then there are no changes in density of the air which remain the same mathematically approx. 1.
The velocity of air in the smaller cross-section area is more where the area of cross-section is large.
Hence multiplication of area and velocity remain constant at each and every point through the vessel or duct.
$ \Rightarrow {{\text{A}}_1} \times {{\text{V}}_1} = {{\text{A}}_2} \times {{\text{V}}_2}$
Complete step-by-step answer:
Let’s us consider, \[{\text{v}}\]= wind speed
And we know that power is multiplication of force(F) and velocity(v)
Power, \[{\text{P = F}} \times {\text{v}}\] . . . . . . . . . . . . .(1)
We can write the force expression as rate of change of momentum(P) per unit time
Force, \[{\text{F}} = \dfrac{{d{\text{P}}}}{{dt}}\]
Momentum(P) is defined as multiplication of mass(m) and velocity(v)
\[{\text{F}} = \dfrac{{d{\text{P}}}}{{dt}} = \dfrac{{d\left( {{\text{m}}{\text{.v}}} \right)}}{{dt}}\]
On differentiation using $\dfrac{{du.v}}{{dt}} = u\dfrac{{dv}}{{dt}} + v\dfrac{{du}}{{dt}}$
\[ \Rightarrow {\text{F}} = {\text{m}}{\text{.}}\dfrac{{d\left( {\text{v}} \right)}}{{dt}} + {\text{v}}{\text{.}}\dfrac{{d\left( {\text{m}} \right)}}{{dt}}\]
And \[\dfrac{{d\left( {\text{v}} \right)}}{{dt}} = 0\] because it is given wind velocity v is constant hence its differentiation will be zero.
So, \[{\text{F}} = {\text{v}}{\text{.}}\dfrac{{d\left( {\text{m}} \right)}}{{dt}}\]
We can write mass is equal to density (ρ) multiplied by Volume(V) i.e. m = ρ.V
\[ \Rightarrow {\text{F}} = {\text{v}}{\text{.}}\dfrac{{d\left( \rho {\text{.V}} \right)}}{{dt}}\]
where, ρ= density of air which is constant so we can take it out from differentiation
V= volume
⇒F = v.ρ\[\dfrac{{d\left( {\text{V}} \right)}}{{dt}}\] ………..(2)
From the equation of continuity,
\[ \Rightarrow \dfrac{{d{\text{V}}}}{{dt}} = \] Area × velocity
This can be written as
\[ \Rightarrow \dfrac{{d{\text{V}}}}{{dt}} = {\text{A}}{\text{.v}}\]
On putting \[\dfrac{{d{\text{V}}}}{{dt}} = {\text{A}}{\text{.v}}\] in equation (2),
⇒F = v.ρ.A.v
On further solving
⇒F = ρ.A\[{{\text{v}}^2}\]
Substitute value of F in equation (1), we will get
⇒P= ρA\[{{\text{v}}^3}\]
Hence we can say
⇒ P ∝ \[{{\text{v}}^3}\]
Therefore, the correct option is C.
Note- In this particular question we should know that for incompressible fluids we can apply continuity equation.
Yes, air comes under a compressible fluid. But we can consider air as incompressible in duct systems because when pressure changes then there are no changes in density of the air which remain the same mathematically approx. 1.
The velocity of air in the smaller cross-section area is more where the area of cross-section is large.
Hence multiplication of area and velocity remain constant at each and every point through the vessel or duct.
$ \Rightarrow {{\text{A}}_1} \times {{\text{V}}_1} = {{\text{A}}_2} \times {{\text{V}}_2}$
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Trending doubts
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Give 10 examples of unisexual and bisexual flowers
Why is the cell called the structural and functional class 12 biology CBSE
Differentiate between internal fertilization and external class 12 biology CBSE
Why dont two magnetic lines of force intersect with class 12 physics CBSE