
A wheel has angular acceleration of 3rad${{s}^{-2}}$ and an initial angular speed of 2rad${{s}^{-1}}$. In a time of 2s it has rotated through an angle (in radians) of:
A. 6
B. 10
C. 12
D. 4
Answer
493.8k+ views
Hint: Rotational motion is analogous to translation motion. Therefore, we can relate $\theta $, $\omega $ and $\alpha $ as $\theta ={{\omega }_{0}}t+\dfrac{1}{2}\alpha {{t}^{2}}$. Use this formula to find the angle rotated by the wheel in 2 seconds.
Formula used:
$\theta ={{\omega }_{0}}t+\dfrac{1}{2}\alpha {{t}^{2}}$
Complete answer:
When a body is in rotational motion about a fixed axis called axis of rotation, the angle of rotation ($\theta $) of the body continuously changes. The rate of change of angle of rotation of the body with respect to time is called angular velocity of the body. It is equal to the change of the angle in one unit time. It is denoted by $\omega $.
Then, when the angular velocity of the body is changing, we define angular acceleration of the body. Angular acceleration is defined as the rate of change of angular velocity of the body with respect to time. It is equal to the change of angular velocity of the body in one unit of time. It is denoted by $\alpha $.
Rotational mechanics is analogous to translational mechanics.
The angle $\theta $ is analogous to displacement s.
The angular velocity $\omega $ is analogous to velocity v.
The acceleration $\alpha $ is analogous to acceleration a.
Hence, the relation between $\theta $, $\omega $, $\alpha $ is the same as the relation between s, v, a.
When a body is in pure translational motion, we know $s=ut+\dfrac{1}{2}a{{t}^{2}}$, where u is the initial velocity of the body and t is the given time.
Hence, if the body is in pure rotational motion $\theta ={{\omega }_{0}}t+\dfrac{1}{2}\alpha {{t}^{2}}$ …… (i),
where ${{\omega }_{0}}$ is the initial angular velocity of the body.
In the given case, $\alpha =3{{s}^{-2}}$, ${{\omega }_{0}}=2{{s}^{-1}}$, and t=2s.
Substitute the values in equation (i).
$\Rightarrow \theta =2(2)+\dfrac{1}{2}3{{(2)}^{2}}=4+6=10rad$
Hence, the correct option is B.
Note: Note that like displacement, velocity and acceleration are vectors, angle of rotation, angular velocity and angular acceleration are also vectors.
The direction of these vectors are perpendicular to the position vector of the body (vector joining the position of the body and the axis rotation).
Formula used:
$\theta ={{\omega }_{0}}t+\dfrac{1}{2}\alpha {{t}^{2}}$
Complete answer:
When a body is in rotational motion about a fixed axis called axis of rotation, the angle of rotation ($\theta $) of the body continuously changes. The rate of change of angle of rotation of the body with respect to time is called angular velocity of the body. It is equal to the change of the angle in one unit time. It is denoted by $\omega $.
Then, when the angular velocity of the body is changing, we define angular acceleration of the body. Angular acceleration is defined as the rate of change of angular velocity of the body with respect to time. It is equal to the change of angular velocity of the body in one unit of time. It is denoted by $\alpha $.
Rotational mechanics is analogous to translational mechanics.
The angle $\theta $ is analogous to displacement s.
The angular velocity $\omega $ is analogous to velocity v.
The acceleration $\alpha $ is analogous to acceleration a.
Hence, the relation between $\theta $, $\omega $, $\alpha $ is the same as the relation between s, v, a.
When a body is in pure translational motion, we know $s=ut+\dfrac{1}{2}a{{t}^{2}}$, where u is the initial velocity of the body and t is the given time.
Hence, if the body is in pure rotational motion $\theta ={{\omega }_{0}}t+\dfrac{1}{2}\alpha {{t}^{2}}$ …… (i),
where ${{\omega }_{0}}$ is the initial angular velocity of the body.
In the given case, $\alpha =3{{s}^{-2}}$, ${{\omega }_{0}}=2{{s}^{-1}}$, and t=2s.
Substitute the values in equation (i).
$\Rightarrow \theta =2(2)+\dfrac{1}{2}3{{(2)}^{2}}=4+6=10rad$
Hence, the correct option is B.
Note: Note that like displacement, velocity and acceleration are vectors, angle of rotation, angular velocity and angular acceleration are also vectors.
The direction of these vectors are perpendicular to the position vector of the body (vector joining the position of the body and the axis rotation).
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Why was the Vernacular Press Act passed by British class 11 social science CBSE

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

What steps did the French revolutionaries take to create class 11 social science CBSE

How did silk routes link the world Explain with three class 11 social science CBSE

What are the various challenges faced by political class 11 social science CBSE
