Answer
Verified
429.6k+ views
Hint: We are given with the equation of a travelling wave pulse, although this form is not the standard but we can compare this with the standard equation of a travelling wave pulse to find out the velocity and the direction of propagation of the wave pulse. Also, in order to find out the amplitude, we can use the differential.
Complete step by step answer:
Given, \[y=\dfrac{10}{5+{{(x+2t)}^{2}}}\], comparing it with the standard equation of the wave, \[y=f(x-vt)\] we get
V= 2 m/s and it is moving in negative x direction.
Also, amplitude is the maximum displacement, \[\therefore \dfrac{dy}{dt}=0\]
$\dfrac{d[\dfrac{10}{5+{{(x+2t)}^{2}}}]}{dt}=0 \\
\Rightarrow -10{{[5+{{(x+2t)}^{2}}]}^{2}}(2)(2)(x+2t)=0 \\
\Rightarrow x+2t=0 \\
\therefore t=\dfrac{-x}{2} \\$
So, the equation becomes,
${{y}_{\max }}=\dfrac{10}{5+{{(x+2\times \dfrac{-x}{2})}^{2}}} \\
\Rightarrow {{y}_{\max }}=\dfrac{10}{5} \\
\therefore {{y}_{\max }}=2 $
The amplitude of the pulse is 2m.
Additional Information:
Standing waves are produced when waves travel in diametrically opposite directions. Nodes and antinodes are a region where there are no vibrations. The points in a standing wave that appear to remain flat and do not move are called nodes. Wave is reflected and reflection a node is formed. We know when a stationary wave is produced the fixed ends behave as a node.
Note:While solving such kinds of problems, the easiest way to tackle them is to compare the given equation to the standard equation. Sometimes, the equation given in the question is a bit complex, then we have to simplify it and modify it into a form so that we can compare it with the standard equation. Amplitude is the maximum displacement.
Complete step by step answer:
Given, \[y=\dfrac{10}{5+{{(x+2t)}^{2}}}\], comparing it with the standard equation of the wave, \[y=f(x-vt)\] we get
V= 2 m/s and it is moving in negative x direction.
Also, amplitude is the maximum displacement, \[\therefore \dfrac{dy}{dt}=0\]
$\dfrac{d[\dfrac{10}{5+{{(x+2t)}^{2}}}]}{dt}=0 \\
\Rightarrow -10{{[5+{{(x+2t)}^{2}}]}^{2}}(2)(2)(x+2t)=0 \\
\Rightarrow x+2t=0 \\
\therefore t=\dfrac{-x}{2} \\$
So, the equation becomes,
${{y}_{\max }}=\dfrac{10}{5+{{(x+2\times \dfrac{-x}{2})}^{2}}} \\
\Rightarrow {{y}_{\max }}=\dfrac{10}{5} \\
\therefore {{y}_{\max }}=2 $
The amplitude of the pulse is 2m.
Additional Information:
Standing waves are produced when waves travel in diametrically opposite directions. Nodes and antinodes are a region where there are no vibrations. The points in a standing wave that appear to remain flat and do not move are called nodes. Wave is reflected and reflection a node is formed. We know when a stationary wave is produced the fixed ends behave as a node.
Note:While solving such kinds of problems, the easiest way to tackle them is to compare the given equation to the standard equation. Sometimes, the equation given in the question is a bit complex, then we have to simplify it and modify it into a form so that we can compare it with the standard equation. Amplitude is the maximum displacement.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Derive an expression for drift velocity of free electrons class 12 physics CBSE
Which are the Top 10 Largest Countries of the World?
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
The energy of a charged conductor is given by the expression class 12 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Derive an expression for electric field intensity due class 12 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Derive an expression for electric potential at point class 12 physics CBSE