Answer
Verified
445.2k+ views
Hint:To find the wave function, first recall the general equation for a wave. The wave is said to be moving in a positive direction, so apply the general equation for a wave moving in a positive direction. Using the given values find the value of wavenumber and angular frequency and put these values in the general equation. Apply the conditions given in the question to get the required wave function.
Complete step by step answer:
Given, amplitude of the wave, \[A = 20\,{\text{cm}} = 0.2\,{\text{m}}\]
Wavelength of the wave, \[\lambda = 1\,{\text{m}}\]
Velocity of the wave, \[v = {\text{5 m}}{{\text{s}}^{ - 1}}\]
And at \[x = 0\] and \[t = 0\], it has \[y = 0\] and \[\dfrac{{dy}}{{dt}} < 0\].
The general equation for a wave moving in positive x-direction is given by,
\[y(x,t) = A\sin \left( {kx - \omega t + \phi } \right)\] (i)
where \[A\] is the amplitude, \[k\] is the wavenumber, \[\omega \] is the angular frequency and \[\phi \] is the phase of the wave.
The formula for wavenumber of a wave is,
\[k = \dfrac{{2\pi }}{\lambda }\] (ii)
where \[\lambda \] is the wavelength of the wave.
Here, \[\lambda = 1\,{\text{m}}\] so, wavenumber of the wave is,
\[k = \dfrac{{2\pi }}{1}\,{{\text{m}}^{ - 1}}\]
\[ \Rightarrow k = 2\pi \,{{\text{m}}^{ - 1}}\]
The formula for angular frequency of a wave is,
\[\omega = vk\] (iii)
where \[v\] is the velocity and \[k\] is the wavenumber of the wave.
Here, \[v = {\text{5 m}}{{\text{s}}^{ - 1}}\] and \[k = 2\pi \,{{\text{m}}^{ - 1}}\]so, the angular frequency of the wave is,
\[\omega = 5 \times 2\pi \]
\[ \Rightarrow \omega = 10\pi \,{{\text{s}}^{{\text{ - 1}}}}\] (iv)
Now, putting the values of \[A\], \[k\] and \[\omega \] in equation (i), we get
\[y(x,t) = 0.2\sin \left( {2\pi x - 10\pi t + \phi } \right)\] (v)
Now putting the condition \[x = 0\], \[t = 0\] and \[y = 0\], we get
\[0 = 0.2\sin \phi \]
\[ \Rightarrow \sin \phi = 0\]
\[ \Rightarrow \phi = 2\pi n,\,\,\,n = 0,1,2...\]
Now, we differentiate equation (v) with respect to \[t\] to get the value of \[\dfrac{{dy}}{{dt}}\],
\[\dfrac{{dy}}{{dt}} = 0.2\cos \left( {2\pi x - 10\pi t + \phi } \right) \times \left( { - 10\pi } \right)\]
\[ \Rightarrow \dfrac{{dy}}{{dt}} = - 2\pi \cos \left( {2\pi x - 10\pi t + \phi } \right)\]
At \[x = 0\], \[t = 0\], we have,
\[\dfrac{{dy}}{{dt}} = - 2\pi \cos \left( \phi \right)\]
Therefore, it satisfies the condition \[\dfrac{{dy}}{{dt}} < 0\].
Putting the value \[\phi = 0\] in equation (v) we get,
\[y(x,t) = 0.2\sin \left( {2\pi x - 10\pi t} \right)\]
\[ \therefore y(x,t) = \left( {0.2{\text{m}}} \right)\sin \left[ {\left( {2\pi {{\text{m}}^{ - 1}}} \right)x - \left( {10\pi {{\text{s}}^{ - 1}}} \right)t} \right]{\text{m}}\]
The equation matches with option (C).
Hence the correct answer is option C.
Note: Here we have applied the general equation for a wave moving in positive direction but for a wave moving in negative direction the general equation is, \[y(x,t) = A\sin \left( {kx + \omega t + \phi } \right)\]. Also, while solving problems always check that the units are the same, that is all quantities are in SI units or CGS units.
Complete step by step answer:
Given, amplitude of the wave, \[A = 20\,{\text{cm}} = 0.2\,{\text{m}}\]
Wavelength of the wave, \[\lambda = 1\,{\text{m}}\]
Velocity of the wave, \[v = {\text{5 m}}{{\text{s}}^{ - 1}}\]
And at \[x = 0\] and \[t = 0\], it has \[y = 0\] and \[\dfrac{{dy}}{{dt}} < 0\].
The general equation for a wave moving in positive x-direction is given by,
\[y(x,t) = A\sin \left( {kx - \omega t + \phi } \right)\] (i)
where \[A\] is the amplitude, \[k\] is the wavenumber, \[\omega \] is the angular frequency and \[\phi \] is the phase of the wave.
The formula for wavenumber of a wave is,
\[k = \dfrac{{2\pi }}{\lambda }\] (ii)
where \[\lambda \] is the wavelength of the wave.
Here, \[\lambda = 1\,{\text{m}}\] so, wavenumber of the wave is,
\[k = \dfrac{{2\pi }}{1}\,{{\text{m}}^{ - 1}}\]
\[ \Rightarrow k = 2\pi \,{{\text{m}}^{ - 1}}\]
The formula for angular frequency of a wave is,
\[\omega = vk\] (iii)
where \[v\] is the velocity and \[k\] is the wavenumber of the wave.
Here, \[v = {\text{5 m}}{{\text{s}}^{ - 1}}\] and \[k = 2\pi \,{{\text{m}}^{ - 1}}\]so, the angular frequency of the wave is,
\[\omega = 5 \times 2\pi \]
\[ \Rightarrow \omega = 10\pi \,{{\text{s}}^{{\text{ - 1}}}}\] (iv)
Now, putting the values of \[A\], \[k\] and \[\omega \] in equation (i), we get
\[y(x,t) = 0.2\sin \left( {2\pi x - 10\pi t + \phi } \right)\] (v)
Now putting the condition \[x = 0\], \[t = 0\] and \[y = 0\], we get
\[0 = 0.2\sin \phi \]
\[ \Rightarrow \sin \phi = 0\]
\[ \Rightarrow \phi = 2\pi n,\,\,\,n = 0,1,2...\]
Now, we differentiate equation (v) with respect to \[t\] to get the value of \[\dfrac{{dy}}{{dt}}\],
\[\dfrac{{dy}}{{dt}} = 0.2\cos \left( {2\pi x - 10\pi t + \phi } \right) \times \left( { - 10\pi } \right)\]
\[ \Rightarrow \dfrac{{dy}}{{dt}} = - 2\pi \cos \left( {2\pi x - 10\pi t + \phi } \right)\]
At \[x = 0\], \[t = 0\], we have,
\[\dfrac{{dy}}{{dt}} = - 2\pi \cos \left( \phi \right)\]
Therefore, it satisfies the condition \[\dfrac{{dy}}{{dt}} < 0\].
Putting the value \[\phi = 0\] in equation (v) we get,
\[y(x,t) = 0.2\sin \left( {2\pi x - 10\pi t} \right)\]
\[ \therefore y(x,t) = \left( {0.2{\text{m}}} \right)\sin \left[ {\left( {2\pi {{\text{m}}^{ - 1}}} \right)x - \left( {10\pi {{\text{s}}^{ - 1}}} \right)t} \right]{\text{m}}\]
The equation matches with option (C).
Hence the correct answer is option C.
Note: Here we have applied the general equation for a wave moving in positive direction but for a wave moving in negative direction the general equation is, \[y(x,t) = A\sin \left( {kx + \omega t + \phi } \right)\]. Also, while solving problems always check that the units are the same, that is all quantities are in SI units or CGS units.
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
Define cubit handspan armlength and footspan class 11 physics CBSE
Maximum speed of a particle in simple harmonic motion class 11 physics CBSE
Give a brief account on the canal system in sponge class 11 biology CBSE
Assertion Pila has dual mode of respiration Reason class 11 biology CBSE