![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
A hot body obeying Newton's law of cooling is cooled down from its peak value \[{80^ \circ }C\] to an ambient temperature of ${30^ \circ }C$. It takes $5\min .$ in cooling down from ${80^ \circ }C{\text{ to }}{40^ \circ }C$. How much time will it take to cool down from ${62^ \circ }C{\text{ to }}{32^ \circ }C$
(given $\ln 2 = 0.693,\ln 5 = 1.609$)
a. $9.6\min .$
b. $3.75\min .$
c. $8.6\min .$
d. $6.5\min .$
Answer
456.6k+ views
Hint In this question, the only formula that will be used is Newton's law of cooling which is $({\theta _t} - {\theta _o}) = ({\theta _p} - {\theta _o}){e^{ - kt}}$
Here , ${\theta _t}$ is the temperature at time t,
${\theta _o}$ is the temperature of surroundings,
${\theta _p}$ is the peak temperature and
$k$ is the constant
We will first determine the unknown value of $k$ and then use this law again to find the time according to new conditions.
Complete step-by-step solution:
Newton's law of cooling states that the rate of heat loss of a body is directly proportional to the difference in the temperature between the body and its surroundings.
Here the temperature of surroundings or we can say, the ambient temperature is ${30^ \circ }C$. So, ${\theta _ \circ } = {30^ \circ }C$
The peak temperature from which it starts cooling down is ${80^ \circ }C$. It is represented by ${\theta _p}$ . So, ${\theta _p} = {80^ \circ }C$ body cools down from peak temperature after a certain time interval. In this case, the time interval is $5\min .$ or $50 \times 60 = 300s$ and temperature ${\theta _t} = {40^ \circ }C$
Newton's law of cooling is mathematically expressed as
$({\theta _t} - {\theta _o}) = ({\theta _p} - {\theta _o}){e^{ - kt}}$
Substituting the values, we get
$
40 - 30 = (80 - 30){e^{ - kt}} \\
10 = 50{e^{ - 300k}} \\
{e^{300k}} = 5$
Taking $\log$ both sides,we have
$ \ln ({e^{300k}}) = \ln 5 \\
300k = \ln 5 \\
k = \dfrac{ln 5}{300} \\
k = \dfrac{0.609}{300} \\
$
Now, we are asked to calculate the time in which the body will cool down. The surrounding temperature and constant k will remain the same.
Let the unknown time be t
We have
$
{\theta _p} = {62^ \circ }C \\
{\theta _t} = {32^ \circ }C \\
{\theta _o} = {30^ \circ }C \\
k = \dfrac{1.609}{300} \\
$
Using Newton's law of cooling, we have
$ \Rightarrow {\theta _t} - {\theta _o} = ({\theta _p} - {\theta _o}){e^{ - kt}}$
$ \Rightarrow 32 - 30 = (62 - 30){e^{ - kt}} $
$ \Rightarrow {e^{ - kt}} = 16 $
Taking $\log$ both sides
$ \ln ({e^{ - kt}}) = \ln 16 $
$ \Rightarrow kt = 4\ln 2 $
$ \Rightarrow t = 4\dfrac{ln 2}{k }$
$ \Rightarrow t = \dfrac{4 \times 0.693 \times 300}{1.609} = 516.84s$
$ \Rightarrow t = 8.614\min $
So, option (c) is correct .
Note:- You should be very careful with calculations and should be well versed with laws related to logarithm. Moreover, you should precisely know which physical quantities are represented by $\theta _{p},\theta _{t},\theta _{n},t$
Here , ${\theta _t}$ is the temperature at time t,
${\theta _o}$ is the temperature of surroundings,
${\theta _p}$ is the peak temperature and
$k$ is the constant
We will first determine the unknown value of $k$ and then use this law again to find the time according to new conditions.
Complete step-by-step solution:
Newton's law of cooling states that the rate of heat loss of a body is directly proportional to the difference in the temperature between the body and its surroundings.
Here the temperature of surroundings or we can say, the ambient temperature is ${30^ \circ }C$. So, ${\theta _ \circ } = {30^ \circ }C$
The peak temperature from which it starts cooling down is ${80^ \circ }C$. It is represented by ${\theta _p}$ . So, ${\theta _p} = {80^ \circ }C$ body cools down from peak temperature after a certain time interval. In this case, the time interval is $5\min .$ or $50 \times 60 = 300s$ and temperature ${\theta _t} = {40^ \circ }C$
Newton's law of cooling is mathematically expressed as
$({\theta _t} - {\theta _o}) = ({\theta _p} - {\theta _o}){e^{ - kt}}$
Substituting the values, we get
$
40 - 30 = (80 - 30){e^{ - kt}} \\
10 = 50{e^{ - 300k}} \\
{e^{300k}} = 5$
Taking $\log$ both sides,we have
$ \ln ({e^{300k}}) = \ln 5 \\
300k = \ln 5 \\
k = \dfrac{ln 5}{300} \\
k = \dfrac{0.609}{300} \\
$
Now, we are asked to calculate the time in which the body will cool down. The surrounding temperature and constant k will remain the same.
Let the unknown time be t
We have
$
{\theta _p} = {62^ \circ }C \\
{\theta _t} = {32^ \circ }C \\
{\theta _o} = {30^ \circ }C \\
k = \dfrac{1.609}{300} \\
$
Using Newton's law of cooling, we have
$ \Rightarrow {\theta _t} - {\theta _o} = ({\theta _p} - {\theta _o}){e^{ - kt}}$
$ \Rightarrow 32 - 30 = (62 - 30){e^{ - kt}} $
$ \Rightarrow {e^{ - kt}} = 16 $
Taking $\log$ both sides
$ \ln ({e^{ - kt}}) = \ln 16 $
$ \Rightarrow kt = 4\ln 2 $
$ \Rightarrow t = 4\dfrac{ln 2}{k }$
$ \Rightarrow t = \dfrac{4 \times 0.693 \times 300}{1.609} = 516.84s$
$ \Rightarrow t = 8.614\min $
So, option (c) is correct .
Note:- You should be very careful with calculations and should be well versed with laws related to logarithm. Moreover, you should precisely know which physical quantities are represented by $\theta _{p},\theta _{t},\theta _{n},t$
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Express the following as a fraction and simplify a class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The length and width of a rectangle are in ratio of class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The ratio of the income to the expenditure of a family class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you write 025 million in scientific notatio class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you convert 295 meters per second to kilometers class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)