A disc rotates about a fixed axis. Its angular velocity $\omega $ varies with time according to the equation $\omega = at + b$. Initially at $t = 0$ its angular velocity is $1.0rad/s$ and angular position is $2rad$; at the instant $t = 2s$ angular velocity is $5.0rad/s$ . Determine angular position $\theta $ and angular acceleration when $t = 4s$.
Answer
Verified
467.1k+ views
Hint:The angle in radians through which a point or line has been rotated about an axis is called its angular position. It is a vector quantity. Angular velocity is defined as how fast the object rotates or changes its position with time. It is represented by using the symbol omega $\omega $ .
Complete step-by-step answer:
Step I:
Given that
angular velocity$\omega $ varies with time according to equation, $\omega = at + b$ ---(i)
When t = $0$, angular velocity $\omega = 0.1rad/s$
Angular position $\theta = 2\pi rad$
Substituting the values in equation(i),
$0.1 = a \times 0 + b$
$b = 0.1$
Substitute value of ‘b’ in equation (i),
$\omega = at + 0.1$ ---(ii)
Step II:
Angular velocity is given by
$\omega = \dfrac{{d\theta }}{{dt}}$
$d\theta = \omega .dt$
$\int {d\theta = \int {\omega .dt} } $
Integrating the above equation,
$\int\limits_0^\theta {d\theta = \int\limits_0^t {(at + 0.1)dt} } $
\[[\theta ]_0^2 = \dfrac{{a{t^2}}}{2} + 0.1t + 2\]
Step III:
Also given when $t = 2\sec $
$\omega = 5rad/s$
Substituting these values in equation(ii)
$5 = 2a + 0.1$
$2a = 5 - 0.1$
$a = \dfrac{{4.9}}{2}$
$a = 2.45$
Step IV:
Substituting the value of a in equation (ii)
$\omega = 2.45t + 0.1$
Angular acceleration is the rate of change of the angular velocity and it is a vector quantity. It is given by, $ \propto = \dfrac{{d\omega }}{{dt}}$
Substituting value of $\omega $ and solving for angular acceleration
$ \propto = \dfrac{{d\{ 2.45t + 0.1\} }}{{dt}}$
$ \propto = 2.45rad/{s^2}$
Step V:
Angular position at $t = 4s$
$\theta = (2.45) \times \dfrac{{{{(4)}^2}}}{2} + 0.1 \times 4 + 2$
$\theta = 19.6 + 0.4 + 2$
$\theta = 22rad$
Step VI:
Therefore, the when $t = 4s$
Angular position of the disc is $\theta = 22rad$ and
Angular acceleration of the disc is $ \propto = 2.45rad/{s^2}$
Note:Sometimes there can be confusion between angular frequency and velocity. It is important to note that angular velocity and angular frequency are the same terms. Angular frequency is the magnitude of the angular velocity. It is therefore sometimes also known as the angular velocity. Angular velocity is the product of frequency and the constant $2\pi $. Whenever any object makes one complete revolution in one second, the object is said to have rotated to a measure of $2\pi $ radians per second.
Complete step-by-step answer:
Step I:
Given that
angular velocity$\omega $ varies with time according to equation, $\omega = at + b$ ---(i)
When t = $0$, angular velocity $\omega = 0.1rad/s$
Angular position $\theta = 2\pi rad$
Substituting the values in equation(i),
$0.1 = a \times 0 + b$
$b = 0.1$
Substitute value of ‘b’ in equation (i),
$\omega = at + 0.1$ ---(ii)
Step II:
Angular velocity is given by
$\omega = \dfrac{{d\theta }}{{dt}}$
$d\theta = \omega .dt$
$\int {d\theta = \int {\omega .dt} } $
Integrating the above equation,
$\int\limits_0^\theta {d\theta = \int\limits_0^t {(at + 0.1)dt} } $
\[[\theta ]_0^2 = \dfrac{{a{t^2}}}{2} + 0.1t + 2\]
Step III:
Also given when $t = 2\sec $
$\omega = 5rad/s$
Substituting these values in equation(ii)
$5 = 2a + 0.1$
$2a = 5 - 0.1$
$a = \dfrac{{4.9}}{2}$
$a = 2.45$
Step IV:
Substituting the value of a in equation (ii)
$\omega = 2.45t + 0.1$
Angular acceleration is the rate of change of the angular velocity and it is a vector quantity. It is given by, $ \propto = \dfrac{{d\omega }}{{dt}}$
Substituting value of $\omega $ and solving for angular acceleration
$ \propto = \dfrac{{d\{ 2.45t + 0.1\} }}{{dt}}$
$ \propto = 2.45rad/{s^2}$
Step V:
Angular position at $t = 4s$
$\theta = (2.45) \times \dfrac{{{{(4)}^2}}}{2} + 0.1 \times 4 + 2$
$\theta = 19.6 + 0.4 + 2$
$\theta = 22rad$
Step VI:
Therefore, the when $t = 4s$
Angular position of the disc is $\theta = 22rad$ and
Angular acceleration of the disc is $ \propto = 2.45rad/{s^2}$
Note:Sometimes there can be confusion between angular frequency and velocity. It is important to note that angular velocity and angular frequency are the same terms. Angular frequency is the magnitude of the angular velocity. It is therefore sometimes also known as the angular velocity. Angular velocity is the product of frequency and the constant $2\pi $. Whenever any object makes one complete revolution in one second, the object is said to have rotated to a measure of $2\pi $ radians per second.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE