Answer
Verified
457.8k+ views
Hint:The angle in radians through which a point or line has been rotated about an axis is called its angular position. It is a vector quantity. Angular velocity is defined as how fast the object rotates or changes its position with time. It is represented by using the symbol omega $\omega $ .
Complete step-by-step answer:
Step I:
Given that
angular velocity$\omega $ varies with time according to equation, $\omega = at + b$ ---(i)
When t = $0$, angular velocity $\omega = 0.1rad/s$
Angular position $\theta = 2\pi rad$
Substituting the values in equation(i),
$0.1 = a \times 0 + b$
$b = 0.1$
Substitute value of ‘b’ in equation (i),
$\omega = at + 0.1$ ---(ii)
Step II:
Angular velocity is given by
$\omega = \dfrac{{d\theta }}{{dt}}$
$d\theta = \omega .dt$
$\int {d\theta = \int {\omega .dt} } $
Integrating the above equation,
$\int\limits_0^\theta {d\theta = \int\limits_0^t {(at + 0.1)dt} } $
\[[\theta ]_0^2 = \dfrac{{a{t^2}}}{2} + 0.1t + 2\]
Step III:
Also given when $t = 2\sec $
$\omega = 5rad/s$
Substituting these values in equation(ii)
$5 = 2a + 0.1$
$2a = 5 - 0.1$
$a = \dfrac{{4.9}}{2}$
$a = 2.45$
Step IV:
Substituting the value of a in equation (ii)
$\omega = 2.45t + 0.1$
Angular acceleration is the rate of change of the angular velocity and it is a vector quantity. It is given by, $ \propto = \dfrac{{d\omega }}{{dt}}$
Substituting value of $\omega $ and solving for angular acceleration
$ \propto = \dfrac{{d\{ 2.45t + 0.1\} }}{{dt}}$
$ \propto = 2.45rad/{s^2}$
Step V:
Angular position at $t = 4s$
$\theta = (2.45) \times \dfrac{{{{(4)}^2}}}{2} + 0.1 \times 4 + 2$
$\theta = 19.6 + 0.4 + 2$
$\theta = 22rad$
Step VI:
Therefore, the when $t = 4s$
Angular position of the disc is $\theta = 22rad$ and
Angular acceleration of the disc is $ \propto = 2.45rad/{s^2}$
Note:Sometimes there can be confusion between angular frequency and velocity. It is important to note that angular velocity and angular frequency are the same terms. Angular frequency is the magnitude of the angular velocity. It is therefore sometimes also known as the angular velocity. Angular velocity is the product of frequency and the constant $2\pi $. Whenever any object makes one complete revolution in one second, the object is said to have rotated to a measure of $2\pi $ radians per second.
Complete step-by-step answer:
Step I:
Given that
angular velocity$\omega $ varies with time according to equation, $\omega = at + b$ ---(i)
When t = $0$, angular velocity $\omega = 0.1rad/s$
Angular position $\theta = 2\pi rad$
Substituting the values in equation(i),
$0.1 = a \times 0 + b$
$b = 0.1$
Substitute value of ‘b’ in equation (i),
$\omega = at + 0.1$ ---(ii)
Step II:
Angular velocity is given by
$\omega = \dfrac{{d\theta }}{{dt}}$
$d\theta = \omega .dt$
$\int {d\theta = \int {\omega .dt} } $
Integrating the above equation,
$\int\limits_0^\theta {d\theta = \int\limits_0^t {(at + 0.1)dt} } $
\[[\theta ]_0^2 = \dfrac{{a{t^2}}}{2} + 0.1t + 2\]
Step III:
Also given when $t = 2\sec $
$\omega = 5rad/s$
Substituting these values in equation(ii)
$5 = 2a + 0.1$
$2a = 5 - 0.1$
$a = \dfrac{{4.9}}{2}$
$a = 2.45$
Step IV:
Substituting the value of a in equation (ii)
$\omega = 2.45t + 0.1$
Angular acceleration is the rate of change of the angular velocity and it is a vector quantity. It is given by, $ \propto = \dfrac{{d\omega }}{{dt}}$
Substituting value of $\omega $ and solving for angular acceleration
$ \propto = \dfrac{{d\{ 2.45t + 0.1\} }}{{dt}}$
$ \propto = 2.45rad/{s^2}$
Step V:
Angular position at $t = 4s$
$\theta = (2.45) \times \dfrac{{{{(4)}^2}}}{2} + 0.1 \times 4 + 2$
$\theta = 19.6 + 0.4 + 2$
$\theta = 22rad$
Step VI:
Therefore, the when $t = 4s$
Angular position of the disc is $\theta = 22rad$ and
Angular acceleration of the disc is $ \propto = 2.45rad/{s^2}$
Note:Sometimes there can be confusion between angular frequency and velocity. It is important to note that angular velocity and angular frequency are the same terms. Angular frequency is the magnitude of the angular velocity. It is therefore sometimes also known as the angular velocity. Angular velocity is the product of frequency and the constant $2\pi $. Whenever any object makes one complete revolution in one second, the object is said to have rotated to a measure of $2\pi $ radians per second.
Recently Updated Pages
A car starts from rest to cover a distance s The coefficient class 11 physics JEE_Main
What happens to the gravitational force between two class 11 physics NEET
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Find the value of the expression given below sin 30circ class 11 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Who is the leader of the Lok Sabha A Chief Minister class 11 social science CBSE