Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 8 Maths Chapter 2 Linear Equations In One Variable Ex 2.1

ffImage
banner

NCERT Solutions for Class 8 Chapter 2 Maths Linear Equations in One Variable Exercise 2.1 - FREE PDF Download

In NCERT Solutions Class 8 Maths Chapter 2, "Linear Equations in One Variable," ex 2.1 class 8 focuses on solving linear equations that contain variables on both sides. It's crucial to understand how to isolate the variable to find the solution accurately. Pay attention to the balancing method, which ensures both sides of the equation remain equal as you simplify.

toc-symbolTable of Content
toggle-arrow


This chapter lays the foundation for solving more complex algebraic equations. Mastering these basic techniques is important as they are essential for higher-level mathematics. Focus on practicing the given problems to build a strong understanding of the concepts.

Access PDF for Class 8 Maths NCERT Chapter 2 Linear Equations in One Variable Exercise 2.1 Solutions

1. Solve and Verify the Equation \[\text{3x=2x+18}\].

Ans: We have an equation \[\text{3x=2x+18}\]

To solve the equation, we will shift \[\text{2x}\] to left hand side 

\[\text{3x-2x=18}\]

\[\text{x=18}\]

Now to verify the result, solve L.H.S and R.H.S

L.H.S

\[\text{3x=3 }\!\!\times\!\!\text{ 18}\]

\[\text{54}\]

R.H.S

\[\text{2x+18=2 }\!\!\times\!\!\text{ 18+18}\]

\[\text{54}\]

L.H.S\[\text{=}\]R.H.S

Hence Proved


2. Solve and Verify the Equation \[\text{5t-3=3t-5}\].

Ans: We have an equation \[\text{5t-3=3t-5}\]

To solve the equation, we will shift \[\text{3t}\] to left hand side and \[\text{3}\] to the right hand side, now,

\[\text{5t-3t=-5+3}\]

\[\text{2t=-2}\]

Dividing the equation by \[\text{2}\]

\[\text{t=-1}\]

Now to verify the result, solve L.H.S and R.H.S

L.H.S

\[\text{5t-3=}\left( \text{5 }\!\!\times\!\!\text{ -1} \right)\text{-3}\]

\[\text{-5-3=-8}\]

R.H.S

\[\text{3t-5=}\left( \text{3 }\!\!\times\!\!\text{ -1} \right)\text{-5}\]

\[\text{-3-5=-8}\]

L.H.S\[\text{=}\]R.H.S

Hence Proved


3. Solve and Verify the Equation \[\text{5x+9=5+3x}\].

Ans: We have an equation \[\text{5x+9=5+3x}\]

To solve the equation, we will shift \[\text{3x}\] to left hand side and \[\text{9}\] to the right hand side, now,

\[\text{5x-3x=5-9}\]

\[\text{2x=-4}\]

Dividing the equation by \[\text{2}\]

\[\text{x=-2}\]

Now to verify the result, solve L.H.S and R.H.S

L.H.S

\[\text{5x+9=}\left( \text{5 }\!\!\times\!\!\text{ -2} \right)\text{+9}\]

\[\text{-10+9=-1}\]

R.H.S

\[\text{5+3x=5+}\left( \text{3 }\!\!\times\!\!\text{ -2} \right)\]

\[\text{5-6=-1}\]

L.H.S\[\text{=}\]R.H.S

Hence Proved


4. Solve and Verify the Equation \[\text{4z+3=6+2z}\].

Ans: We have an equation \[\text{4z+3=6+2z}\]

To solve the equation, we will shift \[\text{2z}\] to left hand side and \[\text{3}\] to right hand side, now,

\[\text{4z-2z=6-3}\]

\[\text{2z=3}\]

Dividing the equation by \[\text{2}\]

\[\text{z=}\frac{\text{3}}{\text{2}}\]

Now to verify the result, solve L.H.S and R.H.S

L.H.S

\[\text{4z+3=}\left( \text{4 }\!\!\times\!\!\text{ }\frac{\text{3}}{\text{2}} \right)\text{+3}\]

\[\text{6+3=9}\]

R.H.S

\[\text{6+2z=6+}\left( \text{2 }\!\!\times\!\!\text{ }\frac{\text{3}}{\text{2}} \right)\]

\[\text{6+3=9}\]

L.H.S\[\text{=}\]R.H.S

Hence Proved


5. Solve and Verify the Equation \[\text{2x-1=14-x}\].

Ans: We have an equation \[\text{2x-1=14-x}\]

To solve the equation, we will shift \[\text{x}\] to left hand side and \[\text{1}\] to the right hand side, now,

\[\text{2x+x=14+1}\]

\[\text{3x=15}\]

Dividing the equation by \[\text{3}\]

\[\text{x=5}\]

Now to verify the result, solve L.H.S and R.H.S

L.H.S

\[\text{2x-1=}\left( \text{2 }\!\!\times\!\!\text{ 5} \right)\text{-1}\]

\[\text{10-1=9}\]

R.H.S

\[\text{14-x=14-5}\]

\[\text{14-5=9}\]

L.H.S\[\text{=}\]R.H.S

Hence Proved


6. Solve and Verify the Equation \[\text{8x+4=3}\left( \text{x-1} \right)\text{+7}\].

Ans: We have an equation \[\text{8x+4=3}\left( \text{x-1} \right)\text{+7}\]

\[\text{8x+4=3x-3+7}\]

\[\text{8x+4=3x+4}\]

To solve the equation, we will shift \[\text{3x}\] to left hand side and \[4\] to the right hand side, now,

\[\text{8x-3x=4-4}\]

\[\text{5x=0}\]

\[\text{x=0}\]

Now to verify the result, solve L.H.S and R.H.S

L.H.S

\[\text{8x+4=}\left( \text{8 }\!\!\times\!\!\text{ 0} \right)\text{+4}\]

\[\text{0+4=4}\]

R.H.S

\[\text{3}\left( \text{x-1} \right)\text{+7=3}\left( \text{0-1} \right)\text{+7}\]

\[\text{-3+7=4}\]

L.H.S\[\text{=}\]R.H.S

Hence Proved


7. Solve and Verify the Equation \[\text{x=}\frac{\text{4}}{\text{5}}\left( \text{x+10} \right)\].

Ans: We have an equation \[\text{x=}\frac{\text{4}}{\text{5}}\left( \text{x+10} \right)\]

\[\text{x=}\frac{\text{4x+40}}{\text{5}}\]

Multiplying the equation by \[\text{5}\]

\[\text{5x=4x+40}\]

To solve the equation, we will shift \[\text{4x}\] to left hand side, now,

\[\text{5x-4x=40}\]

\[\text{x=40}\]

Now to verify the result, solve L.H.S and R.H.S

L.H.S

\[\text{x=40}\]

R.H.S

\[\frac{\text{4}}{\text{5}}\left( \text{x+10} \right)\text{=}\frac{\text{4}}{\text{5}}\left( \text{40+10} \right)\]

\[\frac{\text{4}}{\text{5}}\left( \text{40+10} \right)\text{=}\frac{\text{4 }\!\!\times\!\!\text{ 50}}{\text{5}}\]

\[\frac{\text{4 }\!\!\times\!\!\text{ 50}}{\text{5}}\text{=40}\]

L.H.S\[\text{=}\]R.H.S

Hence Proved


8. Solve and Verify the Equation \[\frac{\text{2x}}{\text{3}}\text{+1=}\frac{\text{7x}}{\text{15}}\text{+3}\].

Ans: We have an equation \[\frac{\text{2x}}{\text{3}}\text{+1=}\frac{\text{7x}}{\text{15}}\text{+3}\]

To solve the equation, we will shift \[\frac{\text{7x}}{\text{15}}\] to left hand side and \[\text{1}\] to right hand side, now,

\[\frac{\text{2x}}{\text{3}}\text{-}\frac{\text{7x}}{\text{15}}\text{=3-1}\]

\[\frac{\text{10x-7x}}{\text{15}}\text{=2}\]

Multiplying \[15\] to the equation, we get

\[\text{3x=30}\]

\[\text{x=10}\]

Now to verify the result, solve L.H.S and R.H.S

L.H.S

\[\frac{\text{2x}}{\text{3}}\text{+1=}\frac{\left( \text{2 }\!\!\times\!\!\text{ 10} \right)\text{+3}}{\text{3}}\]

\[\frac{\left( \text{2 }\!\!\times\!\!\text{ 10} \right)\text{+3}}{\text{3}}\text{=}\frac{\text{23}}{\text{3}}\]

R.H.S

\[\frac{\text{7x}}{\text{15}}\text{+3=}\frac{\left( \text{7 }\!\!\times\!\!\text{ 10} \right)\text{+45}}{\text{15}}\]

\[\frac{\left( \text{7 }\!\!\times\!\!\text{ 10} \right)\text{+45}}{\text{15}}\text{=}\frac{\text{115}}{\text{15}}\]

\[\frac{\text{115}}{\text{15}}\text{=}\frac{\text{23}}{\text{3}}\]

L.H.S\[\text{=}\]R.H.S

Hence Proved


9. Solve and Verify the Equation \[\text{2y+}\frac{\text{5}}{\text{3}}\text{+}\frac{\text{26}}{\text{3}}\text{-y}\].

Ans: We have an equation \[\text{2y+}\frac{\text{5}}{\text{3}}\text{=}\frac{\text{26}}{\text{3}}\text{-y}\]

To solve the equation, we will shift \[y\] to left hand side and \[\frac{\text{5}}{\text{3}}\] to right hand side, now,

\[\text{2y+y=}\frac{\text{26}}{\text{3}}\text{-}\frac{\text{5}}{\text{3}}\]

\[\text{3y=}\frac{\text{21}}{\text{3}}\]

\[\text{3y=7}\]

\[\text{y=}\frac{\text{7}}{\text{3}}\]

Now to verify the result, solve L.H.S and R.H.S

L.H.S

\[\text{2y+}\frac{\text{5}}{\text{3}}\text{=2 }\!\!\times\!\!\text{ }\frac{\text{7}}{\text{3}}\text{+}\frac{\text{5}}{\text{3}}\]

\[\text{2 }\!\!\times\!\!\text{ }\frac{\text{7}}{\text{3}}\text{+}\frac{\text{5}}{\text{3}}\text{=}\frac{\text{14+5}}{\text{3}}\]

\[\frac{\text{14+5}}{\text{3}}\text{=}\frac{\text{19}}{\text{3}}\]

R.H.S

\[\frac{\text{26}}{\text{3}}\text{-y=}\frac{\text{26}}{\text{3}}\text{-}\frac{\text{7}}{\text{3}}\]

\[\frac{\text{26}}{\text{3}}\text{-}\frac{\text{7}}{\text{3}}\text{=}\frac{\text{19}}{\text{3}}\]

L.H.S\[\text{=}\]R.H.S

Hence Proved


10. Solve and Verify the Equation \[\text{3m=5m-}\frac{\text{8}}{\text{5}}\].

Ans: We have an equation \[\text{3m=5m-}\frac{\text{8}}{\text{5}}\]

To solve the equation, we will shift \[\text{5m}\] to left hand side, now,

\[\text{3m-5m=-}\frac{\text{8}}{\text{5}}\]

\[\text{-2m=-}\frac{\text{8}}{\text{5}}\]

Dividing the equation by \[\text{-2}\], we get,

\[\text{m=}\frac{4}{\text{5}}\]

Now to verify the result, solve L.H.S and R.H.S

L.H.S

\[\text{3m=3 }\!\!\times\!\!\text{ }\frac{\text{4}}{\text{5}}\]

\[\frac{\text{3 }\!\!\times\!\!\text{ 4}}{\text{5}}\text{=}\frac{\text{12}}{\text{5}}\]

R.H.S

\[\text{5m-}\frac{\text{8}}{\text{5}}\text{=}\frac{\text{5 }\!\!\times\!\!\text{ 4}}{\text{5}}\text{-}\frac{\text{8}}{\text{5}}\]

\[\frac{\text{5 }\!\!\times\!\!\text{ 4}}{\text{5}}\text{-}\frac{\text{8}}{\text{5}}=\frac{12}{\text{5}}\]

L.H.S\[\text{=}\]R.H.S

Hence Proved


Conclusion

Ex 2.1 Class 8  Maths Chapter 2 is crucial for mastering linear equations in one variable. It focuses on building a strong foundation by teaching students how to solve equations through simple steps. This exercise emphasizes understanding the process of isolating the variable and verifying solutions. Students should concentrate on practicing various types of problems to enhance their problem-solving skills. It's important to pay attention to the methods used and ensure accuracy in each step. Consistent practice will help in gaining confidence and proficiency in handling linear equations.


Class 8 Maths Chapter 2: Exercises Breakdown

Chapter 2 - Linear Equations in One Variable Exercises in PDF Format

Exercise 2.2

10 Questions with Solutions


CBSE Class 8 Maths Chapter 2 Other Study Materials


Chapter-Specific NCERT Solutions for Class 8 Maths

Given below are the chapter-wise NCERT Solutions for Class 8 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Related Links for CBSE Class 8 Maths

WhatsApp Banner