Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 8 Maths Chapter 10 Exponents and Powers Exercise 10.1 - 2025-26

ffImage
banner

Exercise 10.1 Class 8 Maths: Key Questions and Detailed Solutions

The NCERT Solutions for Maths Class 8 Chapter 10 Exercise 10.1 - Exponents and Powers, provided by Vedantu, offer a comprehensive understanding of the basic concepts of exponents. This exercise focuses on the laws of exponents, such as the product of powers, quotient of powers, and power of a power. These concepts are essential as they form the foundation for more advanced mathematical topics.

toc-symbolTable of Content
toggle-arrow


It is important to pay attention to the step-by-step solutions provided, as they simplify complex problems and make it easier to grasp the underlying principles. Focus on understanding how to apply the laws of exponents in different scenarios. Regular practice with these solutions will help build a strong foundation in exponents and powers, ensuring success in future mathematical challenges.

Access NCERT Solutions for Maths Class 8 Chapter 10 - Exponents and Powers

Exercise 10.1

1. Evaluate

(i) \[{3^{ - 2}}\]

Ans: Using property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\], to evaluate \[{3^{ - 2}}\].

Therefore,

$  {3^{ - 2}} = \dfrac{1}{{{3^2}}}  \\ $

$ \dfrac{1}{{{3^2}}} = \dfrac{1}{9} \\ $

Thus, the final value of \[{3^{ - 2}}\] is \[\dfrac{1}{9}\].


(ii) \[{\left( { - 4} \right)^{ - 2}}\]

Ans:

Using property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\],to evaluate \[{\left( { - 4} \right)^{ - 2}}\].

Therefore,

$ \Rightarrow  {\left( { - 4} \right)^{ - 2}} = \dfrac{1}{{{{\left( { - 4} \right)}^2}}} \\  $

 $ \Rightarrow\dfrac{1}{{{{\left( { - 4} \right)}^2}}} = \dfrac{1}{{\left( { - 4} \right) \times \left( { - 4} \right)}} \\ $

Using property \[\left( { - a} \right) \times \left( { - a} \right) = {a^2}\]

$  \Rightarrow\dfrac{1}{{\left( { - 4} \right) \times \left( { - 4} \right)}} = \dfrac{1}{{{4^2}}} \\ $

$ \Rightarrow\dfrac{1}{{{4^2}}} = \dfrac{1}{{16}} \\ $

Thus, the final value of \[{\left( { - 4} \right)^{ - 2}}\] is \[\dfrac{1}{{16}}\].


(iii)  \[{\left( {\dfrac{1}{2}} \right)^{ - 5}}\]

Ans.

Using property \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\], to evaluate \[{\left( {\dfrac{1}{2}} \right)^{ - 5}}\].

Therefore,

$ \Rightarrow{\left( {\dfrac{1}{2}} \right)^{ - 5}} = \dfrac{{{1^{ - 5}}}}{{{2^{ - 5}}}} \\ $

$ \Rightarrow\dfrac{{{1^{ - 5}}}}{{{2^{ - 5}}}} = \dfrac{1}{{{2^{ - 5}}}} \\ $

$ \Rightarrow\dfrac{1}{{{2^{ - 5}}}} = {2^5} \\ $

$ \Rightarrow{2^5} = 2 \times 2 \times 2 \times 2 \times 2 = 32 \\ $

Thus the final value of \[{\left( {\dfrac{1}{2}} \right)^{ - 5}}\] is 32.


2. Simplify and express the result in power notation with positive exponent.

(i) \[{\left( { - 4} \right)^5} \div {\left( { - 4} \right)^8}\]

Ans: To solve this problem, it has to use property \[{a^m} \div {a^n} = {a^{m - n}}\]

Therefore,

$ {\left( { - 4} \right)^5} \div {\left( { - 4} \right)^8} = {\left( { - 4} \right)^{5 - 8}} \\ $

$ = {\left( { - 4} \right)^{ - 3}} \\ $

Again, using property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\]

Therefore,

\[{\left( { - 4} \right)^{ - 3}} = \dfrac{1}{{{{\left( { - 4} \right)}^3}}}\]

So, the simplified form of \[{\left( { - 4} \right)^5} \div {\left( { - 4} \right)^8}\] is \[\dfrac{1}{{{{\left( { - 4} \right)}^3}}}\].


(ii) \[{\left( {\dfrac{1}{{{2^3}}}} \right)^2}\]

Ans: To solve this problem, it has to use property \[{\left( {{a^m}} \right)^n} = {a^{m \times n}}\]

Therefore,

$ {\left( {\dfrac{1}{{{2^3}}}} \right)^2} = \dfrac{1}{{{2^{2 \times 3}}}} \\ $

$ = \dfrac{1}{{{2^6}}} \\ $

So, the simplified form of  \[{\left( {\dfrac{1}{{{2^3}}}} \right)^2}\] is \[\dfrac{1}{{{2^6}}}\].


(iii) \[{\left( { - 3} \right)^4} \times {\left( {\dfrac{5}{3}} \right)^4}\]

Ans: To solve this problem, it has to use property \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\].

Therefore,

\[{\left( { - 3} \right)^4} \times {\left( {\dfrac{5}{3}} \right)^4} = {\left( { - 3} \right)^4} \times \dfrac{{{5^4}}}{{{3^4}}}\]

Again using the property \[{\left( {ab} \right)^m} = {a^m} \times {b^m}\]

Therefore, the above expression will be written as 

\[{\left( { - 3} \right)^4} \times \dfrac{{{5^4}}}{{{3^4}}} = {\left( { - 1} \right)^4} \times {3^4} \times \dfrac{{{5^4}}}{{{3^4}}}\]

Also,

\[{\left( { - 1} \right)^4} = 1\]

Therefore,

 $ {\left( { - 1} \right)^4} \times {3^4} \times \dfrac{{{5^4}}}{{{3^4}}} = {3^{4 - 4}} \times {5^4} \\ $

$ = {3^0} \times {5^4} \\ $

Also,

\[{x^0} = 1\]

Therefore,

\[{3^0} \times {5^4} = {5^4}\]

So the simplified form of  \[{\left( { - 3} \right)^4} \times {\left( {\dfrac{5}{3}} \right)^4}\] is \[{5^4}\].


(iv)   \[\left( {{3^{ - 7}} \div {3^{ - 10}}} \right) \times {3^{ - 5}}\]

Ans: Given equation \[\left( {{3^{ - 7}} \div {3^{ - 10}}} \right) \times {3^{ - 5}}\], can be written as

$ \Rightarrow {3^{ - 7 - \left( { - 10} \right)}} \times {3^{ - 5}}$    $\left[ {SINCE\,\,\,{a^m} \div {a^n} = {a^{m - n}}} \right]$

$ \Rightarrow {3^{\left( { - 7 + 10} \right)}} \times {3^{ - 5}}$

$ \Rightarrow {3^3} \times {3^{ - 5}}$

$ \Rightarrow {3^{\left( {3 + \left( { - 5} \right)} \right)}}$          $\left[ {SINCE\,\,\,{a^m} \times {a^n} = {a^{\left( {m + n} \right)}}} \right]$

$ \Rightarrow {3^{\left( {3 - 5} \right)}}$

$ \Rightarrow {3^{ - 2}}$

$ \Rightarrow \frac{1}{{{3^2}}}$

So, the simplified form of \[\left( {{3^{ - 7}} \div {3^{ - 10}}} \right) \times {3^{ - 5}}\] is $\frac{1}{{{3^2}}}$.


(v)  \[{2^{ - 3}} \times {\left( { - 7} \right)^{ - 3}}\]

Ans: To solve this problem, it has to use property

\[{a^{ - n}} = \dfrac{1}{{{a^n}}}\].

Therefore,

\[{2^{ - 3}} \times {\left( { - 7} \right)^{ - 3}} = \dfrac{1}{{{2^3}}} \times \dfrac{1}{{{{\left( { - 7} \right)}^3}}}\]

Again using property \[{a^m} \times {b^m} = {\left( {ab} \right)^m}\].

Therefore,

Above expression will be written as,

$ \dfrac{1}{{{2^3}}} \times \dfrac{1}{{{{\left( { - 7} \right)}^3}}} = \dfrac{1}{{{{\left[ {2 \times \left( { - 7} \right)} \right]}^3}}} \\ $

$ = \dfrac{1}{{{{\left( { - 14} \right)}^3}}} \\ $

So, the simplified form of \[{2^{ - 3}} \times {\left( { - 7} \right)^{ - 3}}\] is \[\dfrac{1}{{{{\left( { - 14} \right)}^3}}}\].


3. Find the value of 

(i) \[\left( {{3^0} + {4^{ - 1}}} \right) \times {2^2}\]

Ans: To solve this problem, it has to use property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\] and \[{x^0} = 1\].

Therefore,

$ \left( {{3^0} + {4^{ - 1}}} \right) \times {2^2} = \left( {1 + \dfrac{1}{4}} \right) \times 4 \\ $

$ = \dfrac{5}{4} \times 4 \\ $

$  = 5 \\ $

So, the value of \[\left( {{3^0} + {4^{ - 1}}} \right) \times {2^2}\] is 5.


(ii) \[\left( {{2^{ - 1}} \times {4^{ - 1}}} \right) \div {2^{ - 2}}\]

Ans:

\[\left( {{2^{ - 1}} \times {4^{ - 1}}} \right) \div {2^{ - 2}} = \left( {{2^{ - 1}} \times {{\left\{ {{{\left( 2 \right)}^2}} \right\}}^{ - 1}}} \right) \div {2^{ - 2}}\]

To solve this expression, it has to use property \[{\left( {{a^m}} \right)^n} = {a^{mn}}\].

Therefore,

\[\left( {{2^{ - 1}} \times {{\left\{ {{{\left( 2 \right)}^2}} \right\}}^{ - 1}}} \right) \div {2^{ - 2}} = \left( {{2^{ - 1}} \times {2^{ - 2}}} \right) \div {2^{ - 2}}\]

Using property \[{a^m} \times {a^n} = {a^{m + n}}\],

$ \left( {{2^{ - 1}} \times {2^{ - 2}}} \right) \div {2^{ - 2}} = {2^{\left( { - 1 - 2} \right)}} \div {2^{ - 2}} \\ $

$ = {2^{ - 3}} \div {2^{ - 2}} \\ $

Using the property \[{a^m} \div {a^n} = {a^{m - n}}\],

$ {2^{ - 3}} \div {2^{ - 2}} = {2^{\left( { - 3 - \left( { - 2} \right)} \right)}} \\ $

$ = {2^{\left( { - 3 + 2} \right)}} \\ $

$ = {2^{ - 1}} \\ $

Using the property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\],

\[{2^{ - 1}} = \dfrac{1}{2}\]

So the value of  \[\left( {{2^{ - 1}} \times {4^{ - 1}}} \right) \div {2^{ - 2}}\] is \[\dfrac{1}{2}\].


(iii) \[{\left( {\dfrac{1}{2}} \right)^{ - 2}} + {\left( {\dfrac{1}{3}} \right)^{ - 2}} + {\left( {\dfrac{1}{4}} \right)^{ - 2}}\]

Ans: To solve this problem above expression can be written as 

$  {\left( {\dfrac{1}{2}} \right)^{ - 2}} + {\left( {\dfrac{1}{3}} \right)^{ - 2}} + {\left( {\dfrac{1}{4}} \right)^{ - 2}} = {\left( {\dfrac{2}{1}} \right)^2} + {\left( {\dfrac{3}{1}} \right)^2} + {\left( {\dfrac{4}{1}} \right)^2} \\ $

$ = {2^2} + {3^2} + {4^2} \\ $

$ = 4 + 9 + 16 \\ $

$ = 29 \\ $

Therefore the value of \[{\left( {\dfrac{1}{2}} \right)^{ - 2}} + {\left( {\dfrac{1}{3}} \right)^{ - 2}} + {\left( {\dfrac{1}{4}} \right)^{ - 2}}\] is 29.

(iv) \[{\left( {{3^{ - 1}} + {4^{ - 1}} + {5^{ - 1}}} \right)^0}\]

Ans: To solve this problem, it has to use property \[{x^0} = 1\],

Therefore,

\[{\left( {{3^{ - 1}} + {4^{ - 1}} + {5^{ - 1}}} \right)^0} = 1\]

So the value of \[{\left( {{3^{ - 1}} + {4^{ - 1}} + {5^{ - 1}}} \right)^0}\] is 1.


(v) \[{\left\{ {{{\left( {\dfrac{{ - 2}}{3}} \right)}^{ - 2}}} \right\}^2}\]

Ans: The given expression is

\[{\left\{ {{{\left( {\dfrac{{ - 2}}{3}} \right)}^{ - 2}}} \right\}^2}\]

The above expression can be written as,

\[{\left\{ {{{\left( {\dfrac{{ - 2}}{3}} \right)}^{ - 2}}} \right\}^2} = {\left\{ {{{\left( {\dfrac{3}{{ - 2}}} \right)}^2}} \right\}^2}\]

Now, using the property\[{\left( {{a^m}} \right)^n} = {a^{mn}}\],

\[{\left\{ {{{\left( {\dfrac{3}{{ - 2}}} \right)}^2}} \right\}^2} = {\left( {\dfrac{3}{{ - 2}}} \right)^4}\]

Using the property  \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\],

$  {\left( {\dfrac{3}{{ - 2}}} \right)^4} = \dfrac{{{{\left( 3 \right)}^4}}}{{{{\left( { - 2} \right)}^4}}} \\ $

$ = \dfrac{{81}}{{16}} \\ $

So the value of \[{\left\{ {{{\left( {\dfrac{{ - 2}}{3}} \right)}^{ - 2}}} \right\}^2}\] is \[\dfrac{{81}}{{16}}\].


4. Evaluate

(i) \[\dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}}\]

Ans: To solve this question, using property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\],

So, the above expression becomes,

\[\dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}} = \dfrac{{{2^4} \times {5^3}}}{{{8^1}}}\]

8 can be written as \[2 \times 2 \times 2 = {2^3}\]

Therefore,

\[\dfrac{{{2^4} \times {5^3}}}{{{8^1}}} = \dfrac{{{2^4} \times {5^3}}}{{{2^3}}}\]

Using the property \[{a^m} \div {a^n} = {a^{m - n}}\], we get

 $ \dfrac{{{2^4} \times {5^3}}}{{{2^3}}} = {2^{4 - 3}} \times {5^3} \\ $

 $ = {2^1} \times {5^3} \\ $

 $ = 2 \times 125 \\ $

 $ = 250 \\ $

So the value of \[\dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}}\] is 250.


(ii) \[\left( {{5^{ - 1}} \times {2^{ - 1}}} \right) \times {6^{ - 1}}\]

Ans: To solve this problem, using property \[{a^m} \times {b^m} = {\left( {ab} \right)^m}\],

Therefore,

$\left( {{5^{ - 1}} \times {2^{ - 1}}} \right) \times {6^{ - 1}} = {\left( {5 \times 2} \right)^{ - 1}} \times {6^{ - 1}} $

$= {10^{ - 1}} \times {6^{ - 1}} $

Using the property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\], we get

${10^{ - 1}} \times {6^{ - 1}} $

$= \dfrac{1}{{10}} \times \dfrac{1}{6} $

$ = \dfrac{1}{{60}} $

So, the value of \[\left( {{5^{ - 1}} \times {2^{ - 1}}} \right) \times {6^{ - 1}}\] is \[\dfrac{1}{{60}}\].


5. Find the value of \[m\] for which \[{5^m} \div {5^{ - 3}} = {5^5}\].

Ans: The given equation is \[{5^m} \div {5^{ - 3}} = {5^5}\]

To solve this problem, use the property \[{a^m} \div {a^n} = {a^{m - n}}\].

Therefore,

$\Rightarrow  {5^m} \div {5^{ - 3}} = {5^5} $

$\Rightarrow{5^{\left( {m - \left( { - 3} \right)} \right)}} = {5^5} $

\[\Rightarrow{5^{m + 3}} = {5^5} \]

As the base of the power on both sides is the same, so their power must be equal.

Therefore,

$ m + 3 = 5 $

$\Rightarrow m = 5 - 3 $ 

$\Rightarrow m = 2 $

So the value  of \[m\] is 2.


6. Evaluate 

(i) \[{\left\{ {{{\left( {\dfrac{1}{3}} \right)}^{ - 1}} - {{\left( {\dfrac{1}{4}} \right)}^{ - 1}}} \right\}^{ - 1}}\]

Ans: The given expression is

\[{\left\{ {{{\left( {\dfrac{1}{3}} \right)}^{ - 1}} - {{\left( {\dfrac{1}{4}} \right)}^{ - 1}}} \right\}^{ - 1}}\]

Above expression can be written as

${\left\{ {{{\left( {\dfrac{1}{3}} \right)}^{ - 1}} - {{\left( {\dfrac{1}{4}} \right)}^{ - 1}}} \right\}^{ - 1}}$

$ = {\left\{ {\left( {\dfrac{3}{1}} \right) - \left( {\dfrac{4}{1}} \right)} \right\}^{ - 1}} $

$= {\left( {3 - 4} \right)^{ - 1}} $

$= {\left( { - 1} \right)^{ - 1}} $

Using property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\], we get

$  {\left( { - 1} \right)^{ - 1}} $

$= \dfrac{1}{{ - 1}} $

 $  =  - 1 $

So the value of \[{\left\{ {{{\left( {\dfrac{1}{3}} \right)}^{ - 1}} - {{\left( {\dfrac{1}{4}} \right)}^{ - 1}}} \right\}^{ - 1}}\] is \[ - 1\].


(ii) \[{\left( {\dfrac{5}{8}} \right)^{ - 7}} \times {\left( {\dfrac{8}{5}} \right)^{ - 4}}\]

Ans: The given expression is

\[{\left( {\dfrac{5}{8}} \right)^{ - 7}} \times {\left( {\dfrac{8}{5}} \right)^{ - 4}}\]

Above expression can be written as,

\[{\left( {\dfrac{5}{8}} \right)^{ - 7}} \times {\left( {\dfrac{8}{5}} \right)^{ - 4}} = {\left( {\dfrac{8}{5}} \right)^7} \times {\left( {\dfrac{5}{8}} \right)^4}\]

Using property \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\], we get,

\[{\left( {\dfrac{8}{5}} \right)^7} \times {\left( {\dfrac{5}{8}} \right)^4} = \dfrac{{{8^7} \times {5^4}}}{{{5^7} \times {8^4}}}\]

Using property \[{a^m} \div {a^n} = {a^{m - n}}\], we get

$\dfrac{{{8^7} \times {5^4}}}{{{5^7} \times {8^4}}} = \dfrac{{{8^{7 - 4}}}}{{{5^{7 - 4}}}} $

$= \dfrac{{{8^3}}}{{{5^3}}} $

$= \dfrac{{512}}{{125}} $

So the value of \[{\left( {\dfrac{5}{8}} \right)^{ - 7}} \times {\left( {\dfrac{8}{5}} \right)^{ - 4}}\] is \[\dfrac{{512}}{{125}}\].


7. Simplify 

(i) \[\dfrac{{25 \times {t^{ - 4}}}}{{{5^{ - 3}} \times 10 \times {t^{ - 8}}}}\left( {t \ne 0} \right)\]

Ans: 25 can be written as \[{5^2}\].

10 can be written as \[2 \times 5\].

Therefore, above expression can be written as,

\[\dfrac{{25 \times {t^{ - 4}}}}{{{5^{ - 3}} \times 10 \times {t^{ - 8}}}} = \dfrac{{{5^2} \times {t^{ - 4}}}}{{{5^{ - 3}} \times 2 \times 5 \times {t^{ - 8}}}}\]

Using the property \[{a^m} \div {a^n} = {a^{m - n}}\] and \[{a^m} \times {a^n} = {a^{m + n}}\], we get

$ \dfrac{{{5^2} \times {t^{ - 4}}}}{{{5^{ - 3}} \times 2 \times 5 \times {t^{ - 8}}}} $

$= \dfrac{{{5^2} \times {t^{\left( { - 4 - \left( { - 8} \right)} \right)}}}}{{{5^{ - 3 + 1}} \times 2}} $

$   = \dfrac{{{5^2} \times {t^4}}}{{{5^{ - 2}} \times 2}} $

$   = \dfrac{{{5^{\left( {2 - \left( { - 2} \right)} \right)}} \times {t^4}}}{2} $

 $  = \dfrac{{{5^4} \times {t^4}}}{2} $

 $  = \dfrac{{625{t^4}}}{2} $

So the  value of  \[\dfrac{{25 \times {t^{ - 4}}}}{{{5^{ - 3}} \times 10 \times {t^{ - 8}}}}\] is \[\dfrac{{625{t^4}}}{2}\].


(ii) \[\dfrac{{{3^{ - 5}} \times {{10}^{ - 5}} \times 125}}{{{5^{ - 7}} \times {6^{ - 5}}}}\]

Ans: To solve this problem, 125 can be written as \[{5^3}\].

Therefore, to simplify the expression, we will write the given numbers in terms of 2 and 5 using exponent property.

Hence,

\[\dfrac{{{3^{ - 5}} \times {{10}^{ - 5}} \times 125}}{{{5^{ - 7}} \times {6^{ - 5}}}} = \dfrac{{{3^{ - 5}} \times {{10}^{ - 5}} \times {5^3}}}{{{5^{ - 7}} \times {6^{ - 5}}}}\]

Using property \[{\left( {ab} \right)^m} = {a^m} \times {b^m}\], we get

\[\dfrac{{{3^{ - 5}} \times {{10}^{ - 5}} \times {5^3}}}{{{5^{ - 7}} \times {6^{ - 5}}}} = \dfrac{{{3^{ - 5}} \times {2^{ - 5}} \times {5^{ - 5}} \times {5^3}}}{{{5^{ - 7}} \times {2^{ - 5}} \times {3^{ - 5}}}}\]

Using property \[{a^m} \div {a^n} = {a^{m - n}}\], we get

$ \dfrac{{{3^{ - 5}} \times {2^{ - 5}} \times {5^{ - 5}} \times {5^3}}}{{{5^{ - 7}} \times {2^{ - 5}} \times {3^{ - 5}}}} $

$= {3^{\left( { - 5 - \left( { - 5} \right)} \right)}} \times {2^{\left( { - 5 - \left( { - 5} \right)} \right)}} \times {5^{\left( { - 5 + 3 - \left( { - 7} \right)} \right)}} $

$= {3^0} \times {2^0} \times {5^5} $

Using property \[{x^0} = 1\], we get

\[{3^0} \times {2^0} \times {5^5} = {5^5}\]

So the value of \[\dfrac{{{3^{ - 5}} \times {{10}^{ - 5}} \times 125}}{{{5^{ - 7}} \times {6^{ - 5}}}}\] is \[{5^5}\].


Conclusion

NCERT Solutions for Maths Exercise 10.1 in Class 8 Chapter 10 - Exponents and Powers, provided by Vedantu, offer a thorough understanding of the fundamental rules of exponents. It is important to focus on grasping the product, quotient, and power of a power rules, as well as the concepts of negative and zero exponents. Regular practice of class 8 math exercise 10.1 solutions helps in mastering these concepts, which are crucial for advanced mathematics. Vedantu's step-by-step explanations make learning these principles easier and more effective.


Class 8 Maths Chapter 10: Exercises Breakdown

Exercise

Number of Questions

Exercise 10.2

4 Questions with Solutions


CBSE Class 8 Maths Chapter 10 Other Study Materials


Chapter-Specific NCERT Solutions for Class 8 Maths

Given below are the chapter-wise NCERT Solutions for Class 8 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Related Links for CBSE Class 8 Maths

WhatsApp Banner

FAQs on NCERT Solutions for Class 8 Maths Chapter 10 Exponents and Powers Exercise 10.1 - 2025-26

1. Where can I find NCERT Solutions for Class 8 Maths Chapter 10 Exponents and Powers in PDF format?

You can access NCERT Solutions for Class 8 Maths Chapter 10 Exponents and Powers PDF directly from Vedantu’s official site, which provides stepwise answers as per the latest CBSE 2025–26 NCERT textbook. All solutions are structured using the official NCERT answer format for quick and accurate reference during exam preparation.

2. How do I solve Exercise 10.1 of Class 8 Maths Chapter 10 Exponents and Powers with correct stepwise explanations?

Solving Exercise 10.1 of Class 8 Maths Chapter 10 Exponents and Powers involves applying the rules of exponents—laws like product of powers, quotient of powers, and power of a power. Each answer uses a stepwise approach, following NCERT pattern: first writing the law used, then substituting, and finally simplifying to reach the final CBSE-approved answer.

3. Are the NCERT Solutions for Class 8 Maths Chapter 10 provided here based on the updated CBSE 2025–26 syllabus?

Yes, all NCERT Solutions for Class 8 Maths Chapter 10 on this page are completely aligned with the latest CBSE 2025–26 NCERT textbook and syllabus, ensuring every step and answer matches the current academic expectations for exams.

4. What is the correct way to express numbers using exponents as required in Exercise 10.2?

The correct way is to break down the given number into a product of equal factors and represent it using exponent notation, following the NCERT answer format. Each step should showcase the repeated multiplication and then condense it to exponential form as guided in Exercise 10.2.

5. Can I get stepwise NCERT-approved answers for Class 8 Maths ch 10 Ex 10.1 Exponents and Powers?

Yes, stepwise NCERT-approved answers for Class 8 Maths Chapter 10 Exercise 10.1 are available, covering all textbook questions. Each answer includes proper application of exponents laws and follows the official NCERT answer formatting to ensure clarity and accuracy.

6. How can I check if my answer to Exercise 10.3 is in the correct CBSE format?

To confirm your answer for Exercise 10.3 is in the correct CBSE format, ensure each solution is written in logical sequence—state the exponent rule or property used, show the substitution, and conclude with the final simplified answer in standard exponential form as per NCERT instructions.

7. Are these NCERT Solutions for Class 8 Maths Chapter 10 also helpful for CBSE board exams?

Absolutely, these NCERT Solutions are developed strictly according to CBSE board standards and the latest NCERT guidelines. Practicing with these ensures full preparedness for both school assessments and board-level conceptual clarity, especially for chapters like Exponents and Powers.

8. Is there any difference in solving approach between Exercise 10.2 and 10.3 in NCERT Chapter 10?

Yes, while Exercise 10.2 often focuses on writing numbers in exponential form and expressing large numbers using exponents, Exercise 10.3 usually deals with applying laws of exponents in calculations. Both use a stepwise approach, but Exercise 10.3 requires more simplification and application of formulas as per NCERT answer style.

9. Where can I practice more CBSE-style questions on Exponents and Powers beyond the NCERT textbook exercises?

While NCERT textbook exercises are sufficient for CBSE exams, practicing additional CBSE-style questions can deepen understanding. Vedantu sometimes provides supplementary material and solved examples aligned with NCERT methodology, but always practice all intext and exercise problems from the textbook first for the strongest foundation.

10. If I use these NCERT Solutions for Class 8 Maths Chapter 10, will my answer presentation match exam requirements?

Yes, these NCERT Solutions follow the official CBSE 2025–26 answer format and stepwise explanation method. Using these will help you write clear, logically-sequenced answers in exams, which matches the marking scheme and expectations of board examiners.

11. What should I do if my stepwise solution for an exponents problem does not match the NCERT answer key?

If your stepwise solution differs from the NCERT answer key, carefully check whether all properties of exponents have been correctly applied in sequence, and verify calculation steps. It’s important to use the standard NCERT approach, detailing each rule used for every step, to ensure maximum accuracy and marks as per CBSE format.

12. Can I use these solutions for quick last-minute revision of Exponents and Powers before a test?

Yes, these NCERT Solutions for Class 8 Maths Chapter 10 are ideal for last-minute revision as they provide concise, stepwise answers following the exact CBSE and NCERT structure, letting you quickly review problem-solving methods and presentation style before any exam or assessment.