Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 7 Maths Chapter 12 Algebraic Expressions in Hindi - 2025-26

ffImage
banner

NCERT Solutions For Class 7 Maths Chapter 12 Algebraic Expressions in Hindi - 2025-26

In Ncert Solutions Class 7 Maths Chapter 12 In Hindi, you’ll learn all about algebraic expressions in a very simple way. This chapter explains the basics of terms, variables, coefficients, and how to add, subtract, and solve algebraic expressions. If you ever felt confused about algebra or wanted help understanding monomials, binomials, and polynomials, you’re in the right place!


Vedantu’s step-by-step solutions will guide you through every exercise and tricky question in your NCERT textbook. Plus, you can download free PDFs for these NCERT Solutions in Hindi medium and English medium for easy revision anytime—perfect for clearing doubts before exams.


NCERT Solutions for Class 7 Maths Chapter 12 Algebraic Expressions In Hindi

प्रश्नावली 12.1

1. निम्नलिखित स्थितियों में, चरों, अचरों और अंकगणितीय संक्रियाओं का प्रयोग करते हुए, बीजीय व्यंजकप्राप्त कीजिए:

  1.  संख्य y में से z को घटाना।

  2.  संख्याओं x और yके योग का आधा।

  3.  संख्या z  को स्वंय उस से गुणा किया जाता है।

  4.  संख्याओं p और q के गुणनफल का एक-चौथाई।

  5.  दोनों संख्याओं x और y के वर्गों को जोड़ा जाता है।

  6.  संख्याओं m और n के गुणनफल के तीन गुने में संख्या 5 जोड़ना।

  7.  10 में से संख्याओं  y और z गुणनफल को घटाना।

  8.  संख्याओं a और b के गुणनफल में से उनके योग को घटाना।

उत्तर: \[i)y-z\]

\[ii)\frac{x+y}{2}\]

\[iii){{z}^{2}}\]

\[iv)\frac{pq}{4},\]

\[v){{x}^{2}}+{{y}^{2}}\]

\[vi)3mn+5\]

\[vii)10-yz\]

\[viii)ab-\left( a+b \right)\]


2. (i) निम्नलिखित व्यंजकों मेंप दों और उनके गुणनखंडों को छाँटिए।पदों और उनके गुणनखंडों को पेड़ आरेखों द्वारा भी दर्शाइए।

\[\left( \mathbf{a} \right)~\mathbf{x}-\mathbf{3}\]

उत्तर:


(x - 3) के गुणनखंडों का पेड़ आरेख


\[\left( \mathbf{b} \right)~\mathbf{1}+\mathbf{x}+{{\mathbf{x}}^{\mathbf{2}}}\]

उत्तर:


(1+ x + x2) के गुणनखंडों का पेड़ आरेख


\[\left( \mathbf{c} \right)~\mathbf{y}-{{\mathbf{y}}^{\mathbf{3}}}\]

उत्तर:


(y -  y3) के गुणनखंडों का पेड़ आरेख


\[\left( \mathbf{d} \right)~\mathbf{5x}{{\mathbf{y}}^{\mathbf{2}}}+\mathbf{7}{{\mathbf{x}}^{\mathbf{2}}}\mathbf{y}\]

उत्तर:


(5xy2+7x2y) के गुणनखंडों का पेड़ आरेख


\[\left( \mathbf{e} \right)~-\mathbf{ab}+\mathbf{2}{{\mathbf{b}}^{\mathbf{2}}}-\mathbf{3}{{\mathbf{a}}^{\mathbf{2}}}\]

उत्तर:


(- ab + 2b2- 3a2) के गुणनखंडों का पेड़ आरेख


 (ii)नीचे दिए गए व्यंजकों में, पदों और उनके गुणनखंड को छाँटिए।

\[\left( \mathbf{a} \right)~-\mathbf{4x}+\mathbf{5}\]

उत्तर: पद x और गुणनखंड\[-4\]

\[\left( \mathbf{b} \right)~-\mathbf{4x}+\mathbf{5y}\]

उत्तर: पद x और गुणनखंड\[-4\], पद y और गुणनखंड 5

\[\left( \mathbf{c} \right)~\mathbf{5y}+\mathbf{3}{{\mathbf{y}}^{\mathbf{2}}}\]

उत्तर: पद y और गुणनखंड 5, पद \[{{y}^{2}}\] और गुणनखंड\[3\]

\[\left( \mathbf{d} \right)~\mathbf{xy}+\mathbf{2}{{\mathbf{x}}^{\mathbf{2}}}{{\mathbf{y}}^{\mathbf{2}}}\]

उत्तर: पद \[xy\] और गुणनखंड 1, पद \[{{x}^{2}}{{y}^{2}}\] और गुणनखंड 2

\[\left( \mathbf{e} \right)~\mathbf{pq}+\mathbf{q}\]

उत्तर: पद \[pq\]और गुणनखंड 1, पद q और गुणनखंड 1

\[\left( \mathbf{f} \right)~\mathbf{1}.\mathbf{2ab}-\mathbf{2}.\mathbf{4b}+\mathbf{3}.\mathbf{6a}\]

उत्तर: पद ab और गुणनखंड1,2 पद b और गुणनखंड 2,4 पद a और गुणनखंड 3,6

\[\left( \mathbf{g} \right)~\frac{\mathbf{3}}{\mathbf{4}}\mathbf{x}+\frac{\mathbf{1}}{\mathbf{4}}\]

उत्तर: पद x और गुणनखंड \[\frac{3}{4}\]

\[\left( \mathbf{h} \right)~\mathbf{1}.\mathbf{2}{{\mathbf{p}}^{\mathbf{2}}}+\mathbf{0}.\mathbf{2}{{\mathbf{q}}^{\mathbf{2}}}\]

उत्तर: पद \[{{p}^{2}}\] और गुणनखंड 1,2 पद \[{{q}^{2}}\] औरगुणनखंड \[0.2\]


3. निम्नलिखित व्यंजकों में पदों के संख्यात्मक गुणांकों, जो अचर न हों, पहचान कीजिए।

\[\left( \mathbf{i} \right)~\mathbf{5}-\mathbf{3}{{\mathbf{t}}^{\mathbf{2}}}\]

उत्तर: पद \[{{t}^{2}}\] और गुणनखंड\[-3\]

\[\left( \mathbf{ii} \right)~\mathbf{1}+\mathbf{t}+{{\mathbf{t}}^{\mathbf{2}}}+{{\mathbf{t}}^{\mathbf{3}}}\]

उत्तर: पद \[t\] और गुणनखंड \[1,\]पद \[{{t}^{2}}\] और गुणनखंड \[1,\]पद \[{{t}^{3}}\] और गुणनखंड\[1,\]

\[\left( \mathbf{iii} \right)~\mathbf{x}+\mathbf{2xy}+\mathbf{3y}\]

उत्तर: पद \[x\]और गुणनखंड\[1,\], पद \[xy\] और गुणनखंड\[2\], पद \[y\] और गुणनखंड\[3\]

\[\left( \mathbf{iv} \right)~\mathbf{100m}+\mathbf{1000n}\]

उत्तर: पद \[m\]और गुणनखंड\[100\], पद \[n\] और गुणनखंड\[1000\]

\[\left( \mathbf{v} \right)~-{{\mathbf{p}}^{\mathbf{2}}}{{\mathbf{q}}^{\mathbf{2}}}+\mathbf{7pq}\]

उत्तर: पद \[{{p}^{2}}{{q}^{2}}\] और गुणनखंड\[-1\], पद \[pq\] और गुणनखंड\[7\]

\[\left( \mathbf{vi} \right)~\mathbf{1}.\mathbf{2a}+\mathbf{0}.\mathbf{8b}\]

उत्तर: पद a और गुणनखंड 1.2, पद  b और गुणनखंड 0.8

\[\left( \mathbf{vii} \right)~\mathbf{3}.\mathbf{14}{{\mathbf{r}}^{\mathbf{2}}}\]

उत्तर: पद \[{{r}^{2}}~\]और गुणनखंड 3.14

\[\left( \mathbf{viii} \right)~\mathbf{2}\left( \mathbf{l}+\mathbf{b} \right)\]

उत्तर: पद l और गुणनखंड 2, पद  b और गुणनखंड 2

\[\left( \mathbf{ix} \right)~\mathbf{0}.\mathbf{1y}+\mathbf{0}.\mathbf{01}{{\mathbf{y}}^{\mathbf{2}}}\]

उत्तर: पद y और गुणनखंड 0.1,, पद \[{{y}^{2}}\] और गुणनखंड 0.01


 4. 

  1. वे पद पहचानिए जिनमें \[x\] है और फिर इनमें \[x\] का गुणांक लिखिए।

\[\left( \mathbf{i} \right)~{{\mathbf{y}}^{\mathbf{2}}}\mathbf{x}+\mathbf{y}\]

उत्तर: \[{{y}^{2}}\]

\[\left( \mathbf{ii} \right)~\mathbf{13}{{\mathbf{y}}^{\mathbf{2}}}-\mathbf{8yx}\]

उत्तर: \[8y\]

\[\left( \mathbf{iii} \right)~\mathbf{x}+\mathbf{y}+\mathbf{2}\]

उत्तर: \[1\]

\[\left( \mathbf{iv} \right)~\mathbf{5}+\mathbf{z}+\mathbf{zx}\]

उत्तर: \[z\]

\[\left( \mathbf{v} \right)~\mathbf{1}+\mathbf{x}+\mathbf{xy}\]

उत्तर: \[1\]और \[y\]

\[\left( \mathbf{vi} \right)~\mathbf{12x}{{\mathbf{y}}^{\mathbf{2}}}+\mathbf{25}\]

उत्तर: \[12x\]

\[\left( \mathbf{vii} \right)~\mathbf{7}+\mathbf{x}{{\mathbf{y}}^{\mathbf{2}}}\]

उत्तर: \[{{y}^{2}}\]

  1. वे पद पहचानिए,  जिसमें \[{{y}^{2}}\] और फिर इनमें \[{{y}^{2}}\] का गुणांक लिखिए।

\[\left( \mathbf{i} \right)~\mathbf{8}-\mathbf{x}{{\mathbf{y}}^{\mathbf{2}}}\]

उत्तर: \[x\]

\[\left( \mathbf{ii} \right)~\mathbf{5}{{\mathbf{y}}^{\mathbf{2}}}+\mathbf{7x}\]

उत्तर: \[5\]

\[\left( \mathbf{iii} \right)~\mathbf{2}{{\mathbf{x}}^{\mathbf{2}}}\mathbf{y}-\mathbf{15x}{{\mathbf{y}}^{\mathbf{2}}}+\mathbf{7}{{\mathbf{y}}^{\mathbf{2}}}\]

उत्तर: \[15x\] और\[7\]


5. निम्नलिखित व्यंजकों को एक पदी,  द्विपद और त्रिपद के रूप में वर्गीकृत कीजिए:

i) $~\mathbf{7y}-\mathbf{7z} \\ $

ii)$ ~~{{\mathbf{y}}^{\mathbf{2}}}~~~~ \\  $

iii)$ ~~~\mathbf{x}+\mathbf{y}-\mathbf{xy} \\ $

iv)$ ~\mathbf{100}~ \\ $

v)$~~\mathbf{ab}-\mathbf{a}-\mathbf{b} \\ $

vi)$~~\mathbf{5}-\mathbf{3t} \\ $

vii)$ \ \mathbf{4}{{\mathbf{p}}^{\mathbf{2}}}\mathbf{q}-\mathbf{4}{{\mathbf{q}}^{\mathbf{2}}}\mathbf{p} \\ $

viii)$ \ \mathbf{7mn} \\ $

ix)$~{{\mathbf{z}}^{\mathbf{2}}}-\mathbf{3z}+\mathbf{8} \\ $

x)$~~{{\mathbf{a}}^{\mathbf{2}}}+{{\mathbf{b}}^{\mathbf{2}}} \\ $

xi)$ \ {{\mathbf{z}}^{\mathbf{2}}}+\mathbf{z}~~ \\ $

xii)$ \ \mathbf{1}+\mathbf{x}+{{\mathbf{x}}^{\mathbf{2}}} \\ $

उत्तर:  एकपदी\[(ii),\text{ }\left( iv \right),\text{ }\left( viii \right)\]

द्विपद\[(i),\text{ }\left( vi \right),\text{ }\left( vii \right),\text{ }\left( x \right),\text{ }\left( xi \right)\]

त्रिपद\[(iii),\text{ }\left( v \right),\text{ }\left( ix \right),\text{ }\left( xii \right)\]


6. बताइए कि दिए हुए पदों के युग्म समान पदों के हैं या असमान पदों के हैं:

\[\mathbf{I}.~\mathbf{1},\mathbf{100}~~~~\]

\[\mathbf{II}.~-\mathbf{7x},~\frac{\mathbf{5}}{\mathbf{2}}\mathbf{x}\]

\[\mathbf{III}.~~-\mathbf{29x},~-\mathbf{29y}\]

\[\mathbf{IV}.~~\mathbf{14xy},~\mathbf{42yx}\]

\[\mathbf{V}.~~\mathbf{4}{{\mathbf{m}}^{\mathbf{2}}}\mathbf{p},~\mathbf{4}{{\mathbf{p}}^{\mathbf{2}}}\mathbf{m}\]

\[\mathbf{VI}.~\mathbf{12xz},~\mathbf{12}{{\mathbf{x}}^{\mathbf{2}}}{{\mathbf{z}}^{\mathbf{2}}}\]

उत्तर:  समान  पद\[(i),\text{ }\left( ii \right),\text{ }\left( iv \right)\]

असमान पद\[(iii),\text{ }\left( v \right),\text{ }\left( vi \right)\]


7. निम्नलिखित में समान पदों को छाँटिए:

\[\left( \mathbf{a} \right)~-\mathbf{x}{{\mathbf{y}}^{\mathbf{2}}}-,~-\mathbf{4y}{{\mathbf{x}}^{\mathbf{2}}},~\mathbf{8}{{\mathbf{x}}^{\mathbf{2}}},~\mathbf{2x}{{\mathbf{y}}^{\mathbf{2}}},~\mathbf{7y},~-\mathbf{11}{{\mathbf{x}}^{\mathbf{2}}},~-\mathbf{100x},~-\mathbf{11yx},~\mathbf{20}{{\mathbf{x}}^{\mathbf{2}}}\mathbf{y},~\mathbf{6}{{\mathbf{x}}^{\mathbf{2}}},~\mathbf{y},~\mathbf{2xy},~\mathbf{3x}\]

उत्तर: \[\left( x{{y}^{2}},~2x{{y}^{2}} \right),\text{ }\left( 8{{x}^{2}}11{{x}^{2}} \right),\text{ }\left( -100x,~3x \right)\]

\[\left( b \right)~10pq,~7p~,~8q,~-{{p}^{2}}{{q}^{2}},~-7qp,~-100q,~-23,~12{{q}^{2}}{{p}^{2}},~-5{{p}^{2}},41,~2405p,~78qp,~13{{p}^{2}}q,~q{{p}^{2}},~701{{p}^{2}}\]

उत्तर: \[~\left( 10pq-7qp,~78qp \right),\text{ }\left( 7p,~2405p \right),\text{ }\left( -{{p}^{2}}{{q}^{2}},~12{{q}^{2}}{{p}^{2}} \right),\left( -\text{ }23,\text{ }41 \right)\]


प्रश्नावली 12.2

1. समान पदों को सन्योजित (मिला) कर सरल कीजिए:

  1. \[\left( \mathbf{a} \right)~\mathbf{21b}-\mathbf{32}+\mathbf{7b}-\mathbf{20b}\]

उत्तर: \[21b+7b-20b-32\]

\[=28b-20b-32\]

\[=8b-32\]

  1. \[\left( \mathbf{b} \right)~-{{\mathbf{z}}^{\mathbf{2}}}+\mathbf{13}{{\mathbf{z}}^{\mathbf{2}}}-\mathbf{5z}+\mathbf{7}{{\mathbf{z}}^{\mathbf{3}}}-\mathbf{15z}\]

उत्तर: \[7{{z}^{3}}-{{z}^{2}}+13{{z}^{2}}-5z-15z\]

\[=7{{z}^{3}}+12{{z}^{2}}-20z\]

  1. \[\left( \mathbf{c} \right)~\mathbf{p}-\left( \mathbf{p}-\mathbf{q} \right)-\mathbf{q}-\left( \mathbf{q}-\mathbf{p} \right)\]

उत्तर: \[p-p+q-q-q+p\]

\[=p-p+p+q-q-q\]

\[=p-q\]

  1. \[\left( \mathbf{d} \right)~\mathbf{3a}-\mathbf{2b}-\mathbf{ab}-\left( \mathbf{a}-\mathbf{b}+\mathbf{ab} \right)+\mathbf{3ab}+\mathbf{b}-\mathbf{a}\]

उत्तर: \[3a-2b-ab-a+b-ab+3ab+b-a\]

\[=3a-a-a-2b+b+b-ab-ab+3ab\]

\[=a-ab\]

  1. \[\left( \mathbf{e} \right)~\mathbf{5}{{\mathbf{x}}^{\mathbf{2}}}\mathbf{y}-\mathbf{5}{{\mathbf{x}}^{\mathbf{2}}}+\mathbf{3y}{{\mathbf{x}}^{\mathbf{2}}}-\mathbf{3}{{\mathbf{y}}^{\mathbf{2}}}+{{\mathbf{x}}^{\mathbf{2}}}-{{\mathbf{y}}^{\mathbf{2}}}+\mathbf{8x}{{\mathbf{y}}^{\mathbf{2}}}-\mathbf{3}{{\mathbf{y}}^{\mathbf{2}}}\]

उत्तर: 

$   5{{x}^{2}}y+3{{x}^{2}}y-5{{x}^{2}}+{{x}^{2}}-3{{y}^{2}}-{{y}^{2}}-3{{y}^{2}}+8x{{y}^{2}}  \\$

$   =\ 8{{x}^{2}}y-4{{x}^{2}}-7{{y}^{2}}+8x{{y}^{2}}  \\$

  1. \[\left( \mathbf{f} \right)~\left( \mathbf{3}{{\mathbf{y}}^{\mathbf{2}}}+\mathbf{5y}-\mathbf{4} \right)-(\mathbf{8y}-{{\mathbf{y}}^{\mathbf{2}}}-\mathbf{4})\]

उत्तर: \[3{{y}^{2}}+5y-4-8y+{{y}^{2}}+4\]

\[=3{{y}^{2}}+{{y}^{2}}+5y-8y-4+4\]

\[=4{{y}^{2}}-3y\]


2. जोड़िए:

  1. \[\left( \mathbf{a} \right)~\mathbf{3mn},-\mathbf{5mn},\mathbf{8mn},-\mathbf{4mn}\]

उत्तर: 

$3mn-5mn+8mn-4mn  \\ $

$ = \ 3mn+8mn-5mn-4mn  \\$

$= \ 11mn-9mn=2mn  \\$

  1. \[\left( \mathbf{b} \right)~\mathbf{t}-\mathbf{8tz},\mathbf{3tz}-\mathbf{z},\mathbf{z}-\mathbf{t}\]

उत्तर:

$   ~t-8t.z+3t.z-z+z-t  \\$

$   t-t-z+z-8t.z+3t.z  \\$

$   = \ - \ 8t.z+3t.z=-5t.z  \\$

  1. \[\left( \mathbf{c} \right)~-\mathbf{5mn}+\mathbf{5},\mathbf{12mn}+\mathbf{2},\mathbf{9mn}-\mathbf{8},-\mathbf{2mn}-\mathbf{3}\]

उत्तर: 

$   - \ 5mn+5+12mn+2+9mn-8-2mn-3  \\$

$= \ - \ 5mn+12mn+9mn-2mn+5+2-8-3  \\$

$= \ 14mn+7-11=14mn-4  \\$

  1. \[\left( \mathbf{d} \right)~\mathbf{a}+\mathbf{b}-\mathbf{3},\mathbf{b}-\mathbf{a}+\mathbf{3},\mathbf{a}-\mathbf{b}+\mathbf{3}\]+3,a-b+3

उत्तर: $   a \ + \ b \ - \ 3 \ + \ b \ - \ a \ + \ 3 \ + \ a \ - \ b \ + \ 3  \\$

$   = \ a\ - \ a \ + \ a \ + \ b \ + \ b \ - \ b \ - \ 3 \ + \ 3 \ + \ 3  \\$

$   = \ a \ + \ b \ + \ 3  \\$

  1. \[\left( \mathbf{e} \right)~\mathbf{14x}+\mathbf{10y}-\mathbf{12xy}-\mathbf{13},\mathbf{18}-\mathbf{7x}-\mathbf{10}+\mathbf{8xy},\mathbf{4xy}\]

उत्तर:  $   14x \ + \ 10y \ - \ 12xy \ - \ 13 \ + \ 18 \ - \ 7x \ - \ 10 \ + \ 8xy \ + \ 4xy  \\$

$   = \ 14x \ - \ 7x \ + \ 10y \ - \ 12xy \ + \ 8xy \ + \ 4xy \ - \ 13 \ + \ 18 \ - \10  \\$

$   =7x-2y-23+18=7x-2y-5  \\$

  1. \[\left( \mathbf{f} \right)~\mathbf{5m}-\mathbf{7n},\mathbf{3n}-\mathbf{4m}+\mathbf{2},\mathbf{2m}-\mathbf{3mn}-\mathbf{5}\]

उत्तर: 

$   5m \ -\ 7n \ + \ 3n \ - \ 4m \ + \ 2 \ + \ 2m \ - \ 3mn \ - \ 5  \\$

$= \ 5m \ - \ 4m \ + \ 2m \ - \ 7n \ + \ 3n \ - \ 3mn \ + \ 2 \ - \ 5  \\$

   =3m-4n-3mn-3  \\$

  1. \[\left( \mathbf{g} \right)~\mathbf{4}{{\mathbf{x}}^{\mathbf{2}}}\mathbf{y},\mathbf{3x}{{\mathbf{y}}^{\mathbf{2}}},-\mathbf{5x}{{\mathbf{y}}^{\mathbf{2}}},\mathbf{5}{{\mathbf{x}}^{\mathbf{2}}}\mathbf{y}\]

उत्तर: $   4{{x}^{2}}y+3x{{y}^{2}}-5x{{y}^{2}}+5{{x}^{2}}y  \\$

$   = \ 4xy \ + \ {5x}^{2} y \ + \ 3xy^2 \ - \ 5xy^2  \\

$   = \ 9xy \ - \ 2x{{y}^{2}}  \\$

  1. \[\left( \mathbf{h} \right)~\mathbf{3}{{\mathbf{p}}^{\mathbf{2}}}{{\mathbf{q}}^{\mathbf{2}}}-\mathbf{4pq}+\mathbf{5},-\mathbf{10}{{\mathbf{p}}^{\mathbf{2}}}{{\mathbf{q}}^{\mathbf{2}}},\mathbf{15}+\mathbf{9pq}+\mathbf{7}{{\mathbf{p}}^{\mathbf{2}}}{{\mathbf{q}}^{\mathbf{2}}}\]

उत्तर: 

$   3{{p}^{2}}{{q}^{2}}-4pq+5-10{{p}^{2}}{{q}^{2}}+15+9pq+7{{p}^{2}}{{q}^{2}}  \\$

$   =3{{p}^{2}}{{q}^{2}}-10{{p}^{2}}{{q}^{2}}+7{{p}^{2}}{{q}^{2}}-4pq+9pq+5+15  \\$

$   =10{{p}^{2}}{{q}^{2}}-10{{p}^{2}}{{q}^{2}}+9pq-4pq+20  \\$

$   =5pq+20  \\$

  1. \[\left( \mathbf{i} \right)~\mathbf{ab}-\mathbf{4a},\mathbf{4b}-\mathbf{ab},\mathbf{4a}-\mathbf{4b}\]

उत्तर: $   ab-4a+4b-ab+4a-4b  \\$

$   =ab-ab-4a+4a+4b-4b  \\$

$   =0  \\$

  1. \[\left( \mathbf{j} \right)~{{\mathbf{x}}^{\mathbf{2}}}-{{\mathbf{y}}^{\mathbf{2}}}-\mathbf{1},{{\mathbf{y}}^{\mathbf{2}}}-\mathbf{1}-{{\mathbf{x}}^{\mathbf{2}}},\mathbf{1}-{{\mathbf{x}}^{\mathbf{2}}}-{{\mathbf{y}}^{\mathbf{2}}}\]

उत्तर: $   {{x}^{2}}-{{y}^{2}}-1+{{y}^{2}}-1-{{x}^{2}}+1-{{x}^{2}}-{{y}^{2}}  \\$

$   = \ {{x}^{2}}-{{x}^{2}}-{{x}^{2}}-{{y}^{2}}+{{y}^{2}}-{{y}^{2}}-1-1+1  \\$

$= \ -{{x}^{2}}-{{y}^{2}}-1 \\ $


3. घटाइए:

  1. (\[\left( \mathbf{a} \right)~{{\mathbf{y}}^{\mathbf{2}}}\]में से \[~\mathbf{5}-{{\mathbf{y}}^{\mathbf{2}}}\]

उत्तर: 

$   {{y}^{2}}-\left( 5-{{y}^{2}} \right)  \\$

$   ={{y}^{2}}-5+{{y}^{2}}  \\$

$   =2{{y}^{2}}-5  \\$

  1. \[\left( \mathbf{b} \right)~-\mathbf{12xy}~\]में से \[\mathbf{6xy}\]

उत्तर: \[-12xy-6xy=-18xy\]

  1. \[\left( \mathbf{c} \right)~\left( \mathbf{a}+\mathbf{b} \right)\]में से \[\left( \mathbf{a}-\mathbf{b} \right)\]

उत्तर: 

$   a+b-\left( a-b \right)  \\$

$   =a+b-a+b=2b  \\$

  1. \[\left( \mathbf{d} \right)~\mathbf{b}\left( \mathbf{5}-\mathbf{a} \right)~\]में से \[\mathbf{a}\left( \mathbf{b}-\mathbf{5} \right)\]

उत्तर:

$   ~b\left( 5-a \right)-a\left( b-5 \right)  \\$

$   =\left( 5b-ab \right)-\left( ab-5a \right)  \\$

$   =5b-ab-\left( ab-5a \right)  \\$

$   =5b-ab-ab+5a  \\$

$   =5a+5b-2ab  \\$

  1. \[\left( \mathbf{e} \right)~\mathbf{4}{{\mathbf{m}}^{\mathbf{2}}}-\mathbf{3mn}+\mathbf{8}\]में से \[-{{\mathbf{m}}^{\mathbf{2}}}+\mathbf{5mn}\]

उत्तर:

$   ~4{{m}^{2}}-3mn+8-\left( -m2+5mn \right)  \\$

$   =4{{m}^{2}}-3mn+8+{{m}^{2}}-5mn  \\$

$   =4{{m}^{2}}+{{m}^{2}}-3mn-5mn+88  \\$

$   =5{{m}^{2}}-8mn+8  \\$

  1. \[\left( \mathbf{f} \right)~\mathbf{5x}-\mathbf{10}~\]में से \[-{{\mathbf{x}}^{\mathbf{2}}}+\mathbf{10x}-\mathbf{5}\]

उत्तर: 

$   5x-10-\left( -x2+10x-5 \right)  \\$

$   =5x-10+x2-10x+5  \\$

$   ={{x}^{2}}+5x-10x-10+5  \\$

$   ={{x}^{2}}-5x-5  \\$

  1. \[\mathbf{g})~\mathbf{3ab}-\mathbf{2}{{\mathbf{a}}^{\mathbf{2}}}-\mathbf{2}{{\mathbf{b}}^{\mathbf{2}}}\]से \[\mathbf{5}{{\mathbf{a}}^{\mathbf{2}}}-\mathbf{7ab}+\mathbf{5}{{\mathbf{b}}^{\mathbf{2}}}\]

उत्तर:

$   3ab-2{{a}^{2}}-2{{b}^{2}}-\left( 5{{a}^{2}}-7ab+5{{b}^{2}} \right)  \\$

$   =3ab-2{{a}^{2}}-2{{b}^{2}}-5{{a}^{2}}+7ab-5{{b}^{2}}  \\$

$   =3ab+7ab-2{{a}^{2}}-5{{a}^{2}}-2{{b}^{2}}-5{{b}^{2}}  \\$

$   =10ab-7{{a}^{2}}-7{{b}^{2}}  \\$

  1. \[\left( \mathbf{h} \right)~\mathbf{5}{{\mathbf{p}}^{\mathbf{2}}}+\mathbf{3}{{\mathbf{q}}^{\mathbf{2}}}-\mathbf{pq}~\]में से \[\mathbf{4pq}-\mathbf{5}{{\mathbf{q}}^{\mathbf{2}}}-\mathbf{3}{{\mathbf{p}}^{\mathbf{2}}}\]

उत्तर: 

$   5{{p}^{2}}+3{{q}^{2}}-pq-\left( 4pq-5{{q}^{2}}-3{{p}^{2}} \right)  \\$

$   =5{{p}^{2}}+3{{q}^{2}}-pq-4pq+5{{q}^{2}}+3{{p}^{2}}  \\$

$   =5{{p}^{2}}+3{{p}^{2}}+3{{q}^{2}}+5{{q}^{2}}-pq-4pq  \\$

$   =8{{p}^{2}}+8{{q}^{2}}-5pq  \\$


4. \[\left( \mathbf{a} \right)~\mathbf{2}{{\mathbf{x}}^{\mathbf{2}}}+\mathbf{3xy}~\]प्राप्त करने के लिए \[{{\mathbf{x}}^{\mathbf{2}}}+\mathbf{xy}+{{\mathbf{y}}^{\mathbf{2}}}~\]में क्या जोड़ना चाहिए?

उत्तर: $   2{{x}^{2}}+3xy-\left( {{x}^{2}}+xy+{{y}^{2}} \right)  \\$

$   =2{{x}^{2}}+3xy-{{x}^{2}}-xy-{{y}^{2}}  \\$

$   =2{{x}^{2}}-{{x}^{2}}+3xy-xy-{{y}^{2}}  \\$

$   ={{x}^{2}}+2xy-{{y}^{2}}  \\$


4. \[\left( \mathbf{b} \right)~-\mathbf{3a}+\mathbf{7b}+\mathbf{16}~\]प्राप्त करने के लिए, \[\mathbf{2a}+\mathbf{8b}+\mathbf{10}~\]में से क्या घटाना चाहिए?

उत्तर:  $   2a+8b+10-\left( -3a+7b+16 \right)  \\$

$   =2a+8b+10+3a-7b-16  \\$

$   =2a+3a+8b-7b+10-16  \\$

$   =5a+b-6  \\$


5.\[~-{{\mathbf{x}}^{\mathbf{2}}}-{{\mathbf{y}}^{\mathbf{2}}}+\mathbf{6xy}+\mathbf{20}~\]प्राप्त करने के लिए, \[\mathbf{3}{{\mathbf{x}}^{\mathbf{2}}}-\mathbf{4}{{\mathbf{y}}^{\mathbf{2}}}+\mathbf{5xy}+\mathbf{20}~\]में क्या निकाल लेना चाहिए?

उत्तर: 

$   3{{x}^{2}}-4{{y}^{2}}+5xy+20-\left( -{{x}^{2}}-{{y}^{2}}+6xy+20 \right)  \\$

$   =3{{x}^{2}}-4{{y}^{2}}+5xy+20+{{x}^{2}}+{{y}^{2}}-6xy-20  \\$

$   =3{{x}^{2}}+{{x}^{2}}-4{{y}^{2}}+{{y}^{2}}+5xy-6xy+20-20  \\$

$   =4{{x}^{2}}-3{{y}^{2}}-xy  \\$


6(a). \[\left( \mathbf{a} \right)~\mathbf{3x}-\mathbf{y}+\mathbf{11}~\]और \[-\mathbf{y}-\mathbf{11}~\]के योग में से \[\mathbf{3x}-\mathbf{y}-\mathbf{11}~\]को घटाइए।

उत्तर: $   3x-y+11-y-11-\left( 3x-y-11 \right)  \\$

$   =3x-y+11-y-11-3x+y+11  \\$

$   =3x-3x-y-y+y+11-11+11  \\$

$   =y+11  \\$


6(b). \[\left( \mathbf{b} \right)~\mathbf{4}+\mathbf{3}{{\mathbf{x}}^{\mathbf{4}}}+\mathbf{3x}~\]और \[\mathbf{5}-\mathbf{4x}+\mathbf{2}{{\mathbf{x}}^{\mathbf{2}}}~\]के योग में से \[\mathbf{3}{{\mathbf{x}}^{\mathbf{2}}}-\mathbf{5x}~\]और \[-{{\mathbf{x}}^{\mathbf{2}}}+\mathbf{2x}+\mathbf{5}~\]के योग को घटाइए।

उत्तर: $   \left( 4+3x+5-4x+2{{x}^{2}} \right)-\left( 3{{x}^{2}}-5x-{{x}^{2}}+2x+5 \right)  \\$

$   =\left( 2{{x}^{2}}+3x-4x+4+5 \right)-\left( 3{{x}^{2}}-{{x}^{2}}-5x+2x+5 \right)  \\$

$   =\left( 2{{x}^{2}}-x+9 \right)-\left( 2{{x}^{2}}-3x+5 \right)  \\$

$   =2{{x}^{2}}-x+9-2{{x}^{2}}+3x-5  \\$

$   =2{{x}^{2}}-2{{x}^{2}}-x+3x+9-5  \\$

$   =2x+4  \\$


प्रश्नावली 12.3

1. यदि \[\mathbf{m}=\mathbf{2}~\]है, तो निम्नलिखित के मान ज्ञात कीजिए:

  1. \[\mathbf{m}-\mathbf{2}\]

उत्तर:

$ m-2 \\ $

$= \ 2-2 \\ $

$ = \ 0 \\ $

  1. \[\mathbf{3m}-\mathbf{5}\]

उत्तर:

$ 3m \ - \ 5 \\ $

$ = \ 3\times 2-5 \\ $

$= \ 6 - 5 \\ $

$= \ 1 \\ $

  1. \[\mathbf{9}-\mathbf{5m}\]

उत्तर: 

$ 9 \ - \ 5m \\ $ 

$= \ 9 \ - \ 5 \times 2 \\ $

$ = \ 9 \ - \ 10 \\ $ 

$= \ -1 \\ $

  1. \[\mathbf{3}{{\mathbf{m}}^{\mathbf{2}}}-\mathbf{2m}-\mathbf{7}\]

उत्तर:

$ \ 3{{m}^{2}} \ - 2m -7  \\$

$= \ 3 \times {{2}^{2}}-2\times 2 \ - \ 7  \\$

$ = \ 3 \times 4 \ - \ 4 \ - \ 7  \\$

$= \ 12 \ - \ 4 \ - \ 7 \\ $ 

$= \ 1 \\$ 

  1. \[\frac{\mathbf{5m}}{2}-\mathbf{4}\]

उत्तर: 

$   \frac{5m}{2} \ - \ 4  \\ $

$ = \ \frac{5\times 2}{2} \ - \ 4 \\ $ 

$= \ 5 \ - \ 4 \\$ 

$= \ - \ 1 \\ $


2. यदि \[\mathbf{p}=-\mathbf{2}\], तो निम्नलिखित के मान ज्ञात कीजिए:

  1. \[\mathbf{4p}+\mathbf{7}\]

उत्तर: 

$ 4 \ \left( -2 \right) \ + \ 7 \\ $

$= \ - \ 8 \ + \ 7 \\$ 

$= \ - \ 1 \\$ 

  1. ${-3p^2} + 4p + 7$

उत्तर: 

$- \ 3 \ \times {{\left( -2 \right)}^{2}}+4\times \left( -2 \right) \ + \ 7  \\$

$= \ - \ 3 \ \times 4 \ - \ 8 \ + \ 7 \\ $

$= \ - \ 12 \ - \ 8 \ + \ 7 \\ $

$= \ - \ 13 \\ $

  1. \[\mathbf{2}{{\mathbf{p}}^{\mathbf{3}}}-\mathbf{3}{{\mathbf{p}}^{\mathbf{2}}}+\mathbf{4p}+\mathbf{7}\]

उत्तर: 

$- \ 2 \ \times \left( -2 \right) \ 3 \ - \ 3 \ {{\left( -2 \right)}^{2}} \ + \ 4 \ \left( -2 \right) \ + \ 7  \\$

$= \ - \ 2 \ \times \left( -8 \right) \ - \ 3 \times 4 \ - \ 8 \ + \ 7  \\$

$= \ 16 \ - \ 12 \ - \ 1 \\ $

$= \ 3 \\ $


3. निम्नलिखित व्यंजकों के मान ज्ञात कीजिए, जब \[\mathbf{x}=-\mathbf{1}~\]है:

  1. (\[\mathbf{2x}-\mathbf{7}\]

उत्तर: 

$2 \ \left( -1 \right) \ - \ 7 \\$ 

$= \ - \ 2 \ - \ 7 \\ $

$= \ - \ 9 \\$ 

  1. \[\mathbf{x}+\mathbf{2}\]

उत्तर:

$- \ \left( -1 \right) \ + \ 2 \\ $

$= \ 1 \ + \ 2 \\ $

$= \ 3 \\$

  1. \[{{\mathbf{x}}^{\mathbf{2}}}+\mathbf{2x}+\mathbf{1}\]

उत्तर: 

$   {{\left( -1 \right)}^{2}}  \ + \ 2 \left( -1 \right) \ + \ 1  \\$

$= \ 1 \ - \ 2 \ + \ 1 \\$ 

$= \ 0 \\$ 

  1. \[\mathbf{2}{{\mathbf{x}}^{\mathbf{2}}}-\mathbf{2x}-\mathbf{2}\]

उत्तर: 

\[2{{\left( -1 \right)}^{2}}-2\left( -1 \right)-2\]

$= \ 2 \ + \ 2 \ - \ 2 \\$ 

$= \ 2 \\$ 


4. यदि \[\mathbf{a}=\mathbf{2}~\]और \[\mathbf{b}=-\mathbf{2}~\]है,  तो निम्नलिखित के मान ज्ञात कीजिए:

  1. \[{{\mathbf{a}}^{\mathbf{2}}}+{{\mathbf{b}}^{\mathbf{2}}}\]

उत्तर:

$ \ ~22 \ + \ {{\left( -2 \right)}^{2}} \\$ 

$= \ 4 \ + \ 4 \\$ 

$= \ 8 \\ $

  1. \[{{\mathbf{a}}^{\mathbf{2}}}+\mathbf{ab}+{{\mathbf{b}}^{\mathbf{2}}}\]

उत्तर: 

${{2}^{2}} \ + \ 2\left( -2 \right) \ + \ {{\left( -2 \right)}^{2}}  \\$

$= \ 4 \ - \ 4 \ + \ 4  \\$ 

$= \ 4 \\$ 

  1. \[{{\mathbf{a}}^{\mathbf{2}}}-{{\mathbf{b}}^{\mathbf{2}}}\]

उत्तर: 

${{2}^{2}}-{{\left( -2 \right)}^{2}} \\ $

$=4-4 \\ $

$=0 \\ $


5. जब \[\mathbf{a}=\mathbf{0}~\]और \[\mathbf{b}=-\mathbf{1}~\]है, तो दिए हुए व्यंजकों के मान ज्ञात कीजिए:

  1. \[\mathbf{2a}+\mathbf{ab}\]

उत्तर: 

$2\times 0+0\left( -1 \right) \\ $

$ =0+0 \\ $

$=0 \\ $

  1. \[\mathbf{2}{{\mathbf{a}}^{\mathbf{2}}}+{{\mathbf{b}}^{\mathbf{2}}}+\mathbf{1}\]

उत्तर: 

$2\times {{0}^{2}}+{{\left( -1 \right)}^{2}}+1 \\ $

$=1+1 \\ $

$=2 \\ $

  1. \[\mathbf{2}{{\mathbf{a}}^{\mathbf{2}}}\mathbf{b}+\mathbf{2}{{\mathbf{b}}^{\mathbf{2}}}+\mathbf{ab}\]

उत्तर: 

$2\times {{0}^{2}}\times \left( -1 \right)+2{{\left( -1 \right)}^{2}}+0\left( -1 \right) \\ $

$ =2  $

  1. \[{{\mathbf{a}}^{\mathbf{2}}}+\mathbf{ab}+\mathbf{2}\]

उत्तर: 

${{0}^{2}}+0\left( -1 \right)+2 \\ $

$=2 \\ $


6. इन व्यंजकों को सरल कीजिए तथा इनके मान ज्ञात कीजिए, जब \[x\] का मान\[\mathbf{2}\]है:

  1. \[\mathbf{x}+\mathbf{7}+\mathbf{4}\left( \mathbf{x}-\mathbf{5} \right)\]

उत्तर: 

$   2+7+4\left( 2-5 \right)  \\$

$=9+4\left( -3 \right) \\ $

$=9-12 \\ $

$=-3 \\ $

  1. \[\mathbf{3}\left( \mathbf{x}+\mathbf{2} \right)+\mathbf{5x}-\mathbf{7}\]

उत्तर: 

\[3\left( 2+2 \right)+5\times 2-7\]

$=3\times 4+10-7 \\ $

$=12+10-7 \\ $

$=15 \\ $

  1. \[\mathbf{6x}+\mathbf{5}\left( \mathbf{x}-\mathbf{2} \right)\]

उत्तर: $6\times 2+5\left( 2-2 \right) \\ $

$ =12 \\ $

  1. \[\mathbf{4}\left( \mathbf{2x}-\mathbf{1} \right)+\mathbf{3x}+\mathbf{11}\]

उत्तर: $\left( 2\times 2-1 \right)+3\times 2+11  \\$

$=4\left( 4-1 \right)+6+11 \\$ 

$=4\times 3+17 \\ $

$  =12+17 \\ $

$ =29 \\ $


7. इन व्यंजकों को सरल कीजिए तथा इन के मान ज्ञात कीजिए, जब \[\mathbf{x}=\mathbf{3},~\mathbf{a}=-\mathbf{1}~\]और \[\mathbf{b}=-\mathbf{2}~\]है:

  1. \[\mathbf{3x}-\mathbf{5}-\mathbf{x}+\mathbf{9}\]

उत्तर:  $3\times 3-5-3-9 \\ $

$=9-17 \\ $

$=-8 \\ $

  1. \[\mathbf{2}-\mathbf{8x}+\mathbf{4x}+\mathbf{4}\]

उत्तर: $   2-8\times 3+4\times 3+4  \\$

$ =2-24+12+4 \\ $

$ =-6 \\ $

  1. \[\mathbf{3a}+\mathbf{5}-\mathbf{8a}+\mathbf{1}\]

उत्तर: 

$   3\left( -1 \right)+5-8\left( -1 \right)+1  \\$

$=-3+5-8+1 \\ $

$ =-11+6 \\ $

$ =-5 \\ $

  1. \[\mathbf{10}-\mathbf{3b}-\mathbf{4}-\mathbf{5b}\]

उत्तर: $  10-3\left( -2 \right)-4-5\left( -2 \right)\grave{\ }  \\$

$=10+6-4+10 \\ $

$=22 \\ $

  1. \[\left( \mathbf{e} \right)~\mathbf{2a}-\mathbf{2b}-\mathbf{4}-\mathbf{5}+\mathbf{a}\]

उत्तर: $   2\left( -1 \right)-2\left( -2 \right)-4-5-1  \\$

$ =-2+4-10-8 \\ $

$ =-16 \\ $


8. 

  1. यदि \[\mathbf{z}=\mathbf{10}~\]है, तो \[{{\mathbf{z}}^{\mathbf{3}}}-\mathbf{3}\left( \mathbf{z}-\mathbf{10} \right)~\]का मान ज्ञात कीजिए।

उत्तर: $   103-3\left( 10-10 \right)  \\$

$=1000-0 \\ $

$=1000 \\ $

  1. यदि \[\mathbf{p}=-\mathbf{10}~\]है, तो \[{{\mathbf{p}}^{\mathbf{2}}}-\mathbf{2p}-\mathbf{100}~\]का मान ज्ञात कीजिए।

उत्तर: \[{{\left( -10 \right)}^{2}}-2\left( -10 \right)-100)\]

$=100+20-100 \\ $

$=20 \\ $


9. यदि \[\mathbf{x}=\mathbf{0}~\]पर \[\mathbf{2}{{\mathbf{x}}^{\mathbf{2}}}+\mathbf{x}-\mathbf{a}~\]का मान\[\mathbf{5}\]के बराबर है, तो \[\mathbf{a}\] का मान क्या होना चाहिए?

उत्तर:  $2\times {{0}^{2}}+0-a \\ $

$=5 \\ $

या, \[-a=5\]

या, \[a=-5\]


10. व्यंजक\[~\mathbf{2}\left( {{\mathbf{a}}^{\mathbf{2}}}+\mathbf{ab} \right)+\mathbf{3}-\mathbf{ab}~\]को सरल कीजिए और इसका मान ज्ञात कीजिए, जब \[\mathbf{a}=\mathbf{5}~\]और \[\mathbf{b}=-\mathbf{3}~\]है।

उत्तर: $ ~2\left( {{5}^{2}}+5\left( -3 \right) \right)+3-5\left( -3 \right)  \\$

$   =2\left( 25-15 \right)+3+15  \\$

$=2\times 10+18 \\ $

$ =20+18 \\ $

$=38 \\ $


NCERT Solutions for Class 7 Maths Chapter 12 Algebraic Expressions In Hindi

Chapter-wise NCERT Solutions are provided everywhere on the internet with an aim to help the students to gain a comprehensive understanding. Class 7 Maths Chapter 12 solution Hindi mediums are created by our in-house experts keeping the understanding ability of all types of candidates in mind. NCERT textbooks and solutions are built to give a strong foundation to every concept. These NCERT Solutions for Class 7 Maths Chapter 12 in Hindi ensure a smooth understanding of all the concepts including the advanced concepts covered in the textbook.


NCERT Solutions for Class 7 Maths Chapter 12 in Hindi medium PDF download are easily available on our official website (vedantu.com). Upon visiting the website, you have to register on the website with your phone number and email address. Then you will be able to download all the study materials of your preference in a click. You can also download the Class 7 Maths Algebraic Expressions solution Hindi medium from Vedantu app as well by following the similar procedures, but you have to download the app from Google play store before doing that. 


NCERT Solutions in Hindi medium have been created keeping those students in mind who are studying in a Hindi medium school. These NCERT Solutions for Class 7 Maths Algebraic Expressions in Hindi medium pdf download have innumerable benefits as these are created in simple and easy-to-understand language. The best feature of these solutions is a free download option. Students of Class 7 can download these solutions at any time as per their convenience for self-study purpose. 


These solutions are nothing but a compilation of all the answers to the questions of the textbook exercises. The answers/ solutions are given in a stepwise format and very well researched by the subject matter experts who have relevant experience in this field. Relevant diagrams, graphs, illustrations are provided along with the answers wherever required. In nutshell, NCERT Solutions for Class 7 Maths in Hindi come really handy in exam preparation and quick revision as well prior to the final examinations. 

WhatsApp Banner

FAQs on NCERT Solutions For Class 7 Maths Chapter 12 Algebraic Expressions in Hindi - 2025-26

1. Where can I find accurate, step-by-step NCERT Solutions for Class 7 Maths Chapter 12 (Algebraic Expressions) for the 2025-26 session?

You can find detailed and accurate NCERT Solutions for Class 7 Maths Chapter 12 on Vedantu's platform. These solutions are prepared by subject matter experts and provide a step-by-step guide to solving every problem in the textbook. They are fully aligned with the latest CBSE 2025-26 syllabus, ensuring you understand the correct methods to answer questions in your exams.

2. What is the correct method for adding two algebraic expressions, for example, (7x + 5y) and (2x - 3y), as per the NCERT textbook?

According to the method in the NCERT textbook, you should add algebraic expressions by combining like terms. Here is the step-by-step process for the example:

  • Step 1: Write the expressions to be added: (7x + 5y) + (2x - 3y).

  • Step 2: Group the like terms together. Like terms are those that have the same variables raised to the same power. Here, group the 'x' terms and the 'y' terms: (7x + 2x) + (5y - 3y).

  • Step 3: Add or subtract the coefficients of the like terms: (7+2)x + (5-3)y.

  • Step 4: Simplify to get the final answer: 9x + 2y.

3. How do I find the value of an algebraic expression like 3a + 5b - 2 when a=2 and b=1?

To find the value of an algebraic expression for given values of variables, you need to substitute the values into the expression and then simplify. The NCERT Solutions explain this method as follows:

  • Step 1: Start with the given expression: 3a + 5b - 2.

  • Step 2: Substitute the given values for each variable. Replace 'a' with 2 and 'b' with 1: 3(2) + 5(1) - 2.

  • Step 3: Perform the multiplication first: 6 + 5 - 2.

  • Step 4: Perform the addition and subtraction from left to right: 11 - 2 = 9. Therefore, the value of the expression is 9.

4. What is the difference between a term and a coefficient in an algebraic expression, with an example from Chapter 12?

In an algebraic expression, terms are the individual parts of the expression that are separated by addition (+) or subtraction (-) signs. The coefficient is the numerical factor of a term. For example, in the expression 8xy - 5x:

  • The terms are 8xy and -5x.
  • In the term 8xy, the coefficient is 8.
  • In the term -5x, the coefficient is -5.
Understanding this difference is fundamental to correctly solving problems in Chapter 12.

5. Why is it crucial to identify and group 'like terms' before performing addition or subtraction in algebraic expressions?

It is crucial to group like terms because addition and subtraction are only possible for terms that represent the same type of quantity. Think of variables as objects: '3x' could represent 3 apples and '4y' could represent 4 bananas. You can't add them to get '7xy' (7 apple-bananas). However, if you have '3x' (3 apples) and '2x' (2 apples), you can combine them to get '5x' (5 apples). Grouping like terms (e.g., all 'x' terms together, all 'y' terms together) ensures you are combining only those quantities that can be mathematically combined, which is the fundamental rule for simplifying expressions.

6. What is a common mistake students make when subtracting one algebraic expression from another, for instance, subtracting (a - b) from (2a + b)?

A very common mistake is forgetting to change the sign of every term in the expression being subtracted. When subtracting (a - b) from (2a + b), the correct setup is (2a + b) - (a - b). The critical step is to apply the negative sign to both 'a' and '-b'. The expression becomes 2a + b - a - (-b), which simplifies to 2a + b - a + b. Many students incorrectly write 2a + b - a - b, forgetting to change -b to +b. The correct answer after combining like terms is a + 2b.

7. How do the NCERT Solutions for Chapter 12 explain the classification of polynomials based on the number of terms?

The NCERT Solutions explain that polynomials can be classified based on how many non-zero terms they contain:

  • A monomial is an expression with only one term (e.g., 7x, or 4y²).

  • A binomial is an expression with two unlike terms (e.g., 2a + 3b, or x² - 4).

  • A trinomial is an expression with three unlike terms (e.g., x + y + 7, or a² + 2ab + b²).

An expression with more than one term with non-zero coefficients and variables having non-negative integral exponents is generally called a polynomial.

8. How does understanding algebraic expressions in Chapter 12 help in solving practical problems?

Understanding algebraic expressions is a foundational skill in mathematics because it allows us to translate real-world problems into a mathematical format that can be solved. For instance, if you want to calculate the perimeter of a rectangle whose length is 5 units more than its width ('w'), you can express the length as w + 5. The perimeter can then be written as the algebraic expression 2(w + (w+5)). By simplifying this expression to 4w + 10, you create a general formula to find the perimeter for any given width. This skill is essential for building formulas and solving word problems in geometry, finance, and science.