NCERT Solutions for Class 12 Maths Chapter 7 Integrals Exercise 7.3 - FREE PDF Download
Chapter 7 of Class 12 Maths, "Integrals," is a crucial part of calculus that helps in understanding the concept of integration, which is the reverse process of differentiation. This chapter provides a comprehensive overview of indefinite integrals, definite integrals, and their properties. It is important to grasp these concepts as they form the foundation for more advanced topics in mathematics and various applications in physics and engineering.


Ex 7.3 Class 12 focuses on solving integrals using various techniques like substitution, partial fractions, and integration by parts. Students should concentrate on mastering these methods and understanding the fundamental principles of integration. Practicing these exercises will enhance problem-solving skills and prepare students for higher-level studies and competitive exams.
Glance of NCERT Solutions Maths Chapter 7 Integrals - Ex 7.3 Class 12 | Vedantu
This chapter introduces the concept of integration, the reverse process of differentiation.
Key formulas include the integration by substitution, partial fractions, and integration by parts.
Questions include finding integrals using substitution, partial fractions, and by parts, covering both indefinite and definite integrals.
Understanding these exercises is crucial as integrals are widely used in higher mathematics, physics, and engineering.
This ex 7.3 class 12 helps students develop problem-solving skills and a deeper understanding of integral calculus.
Ex 7.3 class 12 consists of 24 questions that cover a variety of integral problems.
Access PDF for Maths NCERT Chapter 7 Integrals Exercise 7.3 Class 12
Exercise 7.3
1. Solve the following: ${{\sin }^{2}}\left( 2x+5 \right)$.
Ans: Given expression ${{\sin }^{2}}\left( 2x+5 \right)$.
Given expression can be written as
${{\sin }^{2}}\left( 2x+5 \right)=\frac{1-\cos 2\left( 2x+5 \right)}{2}$
$\Rightarrow {{\sin }^{2}}\left( 2x+5 \right)=\frac{1-\cos \left( 4x+10 \right)}{2}$
Integration of given expression is
\[\Rightarrow \int{{{\sin }^{2}}\left( 2x+5 \right)dx}=\int{\frac{1-\cos \left( 4x+10 \right)}{2}dx}\]
\[\Rightarrow \int{{{\sin }^{2}}\left( 2x+5 \right)dx}=\frac{1}{2}\int{1dx-\frac{1}{2}\int{\cos \left( 4x+10 \right)dx}}\]
\[\Rightarrow \int{{{\sin }^{2}}\left( 2x+5 \right)dx}=\frac{1}{2}x-\frac{1}{2}\left( \frac{\sin \left( 4x+10 \right)}{4} \right)+C\]
\[\therefore \int{{{\sin }^{2}}\left( 2x+5 \right)dx}=\frac{1}{2}x-\frac{1}{8}\sin \left( 4x+10 \right)+C\]
2. Solve the following: $\sin 3x\cos 4x$.
Ans: Given expression $\sin 3x\cos 4x$.
Using the identity $\sin A\cos B=\frac{1}{2}\left\{ \sin \left( A+B \right)+\sin \left( A-B \right) \right\}$ given expression can be written as
$\sin 3x\cos 4x=\frac{1}{2}\left\{ \sin \left( 3x+4x \right)+\sin \left( 3x-4x \right) \right\}$
Integration of above expression is
\[\Rightarrow \int{\sin 3x\cos 4x}dx=\int{\frac{1}{2}\left\{ \sin 7x+\sin \left( -x \right) \right\}dx}\]
\[\Rightarrow \int{\sin 3x\cos 4x}dx=\frac{1}{2}\int{\left\{ \sin 7x+\sin x \right\}dx}\]
\[\Rightarrow \int{\sin 3x\cos 4x}dx=\frac{1}{2}\int{\sin 7xdx+\frac{1}{2}\int{\sin x}dx}\]
\[\Rightarrow \int{\sin 3x\cos 4x}dx=\frac{1}{2}\left( \frac{-\cos 7x}{7} \right)-\frac{1}{2}\left( -\cos x \right)+C\]
\[\therefore \int{\sin 3x\cos 4x}dx=\frac{-\cos 7x}{14}+\frac{\cos x}{2}+C\]
3. Solve the following: $\cos 2x\cos 4x\cos 6x$.
Ans: Given expression $\cos 2x\cos 4x\cos 6x$.
Using the identity $\cos A\cos B=\frac{1}{2}\left\{ \cos \left( A+B \right)+\cos \left( A-B \right) \right\}$ given expression can be written as
$\cos 2x\left( \cos 4x\cos 6x \right)=\cos 2x\frac{1}{2}\left\{ \cos \left( 4x+6x \right)+\cos \left( 4x-6x \right) \right\}$
Integration of the above expression is
$\Rightarrow \int{\cos 2x\left( \cos 4x\cos 6x \right)}=\int{\cos 2x}\left[ \frac{1}{2}\left\{ \cos 10x+\cos \left( -2x \right) \right\} \right]dx$
$\Rightarrow \int{\cos 2x\left( \cos 4x\cos 6x \right)}=\int{\left[ \frac{1}{2}\left\{ \cos 2x\cos 10x+\cos 2x\cos \left( -2x \right) \right\} \right]}dx$
$\Rightarrow \int{\cos 2x\left( \cos 4x\cos 6x \right)}=\frac{1}{2}\int{\left[ \left\{ \cos 2x\cos 10x+{{\cos }^{2}}2x \right\} \right]}dx$
Again applying the identity $\cos A\cos B=\frac{1}{2}\left\{ \cos \left( A+B \right)+\cos \left( A-B \right) \right\}$, we get
$\Rightarrow \int{\cos 2x\left( \cos 4x\cos 6x \right)}=\frac{1}{2}\int{\left[ \left\{ \frac{1}{2}\cos \left( 2x+10x \right)+\cos \left( 2x-10x \right)+\left( \frac{1+\cos 4x}{2} \right) \right\} \right]}dx$$\Rightarrow \int{\cos 2x\left( \cos 4x\cos 6x \right)}=\frac{1}{4}\int{\left[ \cos 12x+\cos 8x+\cos 4x \right]}dx$
$\therefore \int{\cos 2x\cos 4x\cos 6x}=\frac{1}{4}\left[ \frac{\sin 12x}{12}+\frac{\sin 8x}{8}+\frac{\sin 4x}{4} \right]+C$
4. Solve the following: ${{\sin }^{3}}\left( 2x+1 \right)$.
Ans: Given expression ${{\sin }^{3}}\left( 2x+1 \right)$.
Let $I=\int{{{\sin }^{3}}\left( 2x+1 \right)dx}$
$\Rightarrow I=\int{{{\sin }^{2}}\left( 2x+1 \right)\sin \left( 2x+1 \right)dx}$
$\Rightarrow I=\int{\left( 1-{{\cos }^{2}}\left( 2x+1 \right) \right)\sin \left( 2x+1 \right)dx}$
Let \[\cos \left( 2x+1 \right)=t\]
$\therefore -2\sin \left( 2x+1 \right)dx=dt$
Integration becomes
$\Rightarrow I=-\frac{1}{2}\int{\left( 1-{{t}^{2}} \right)dt}$
$\Rightarrow I=-\frac{1}{2}\left( t-\frac{{{t}^{3}}}{3} \right)+C$
Substitute \[\cos \left( 2x+1 \right)=t\],
$\Rightarrow I=-\frac{1}{2}\left( \cos \left( 2x+1 \right)-\frac{{{\cos }^{3}}\left( 2x+1 \right)}{3} \right)+C$
$\therefore \int{{{\sin }^{3}}\left( 2x+1 \right)dx}=\frac{-\cos \left( 2x+1 \right)}{2}+\frac{{{\cos }^{3}}\left( 2x+1 \right)}{3}+C$
5. Solve the following: ${{\sin }^{3}}x{{\cos }^{3}}x$.
Ans: Given expression ${{\sin }^{3}}x{{\cos }^{3}}x$.
Let $I=\int{{{\sin }^{3}}x{{\cos }^{3}}x}dx$
$\Rightarrow I=\int{{{\sin }^{2}}x\sin x{{\cos }^{3}}x}dx$
$\Rightarrow I=\int{{{\cos }^{3}}x\left( 1-{{\cos }^{2}}x \right)\sin x}dx$
Let $\cos x=t$
$\therefore -\sin dx=dt$
Integration becomes
$\Rightarrow I=-\int{{{t}^{3}}\left( 1-{{t}^{2}} \right)}dt$
$\Rightarrow I=-\int{\left( {{t}^{3}}-{{t}^{5}} \right)}dt$
$\Rightarrow I=-\left[ \frac{{{t}^{4}}}{4}-\frac{{{t}^{6}}}{6} \right]+C$
Substitute $\cos x=t$,
$\Rightarrow I=-\left[ \frac{{{\cos }^{4}}x}{4}-\frac{{{\cos }^{6}}x}{6} \right]+C$
$\therefore \int{{{\sin }^{3}}x{{\cos }^{3}}x}dx=\frac{{{\cos }^{6}}x}{6}-\frac{{{\cos }^{4}}x}{4}+C$
6. Solve the following: $\sin x\sin 2x\sin 3x$.
Ans: Given expression $\sin x\sin 2x\sin 3x$.
Using the identity $\sin A\sin B=\frac{1}{2}\cos \left( A-B \right)-\cos \left( A+B \right)$, given expression can be written as
$\Rightarrow \sin x\sin 2x\sin 3x=\sin x.\frac{1}{2}\cos \left( 2x-3x \right)-\cos \left( 2x+3x \right)$
Integration of given expression is
$\Rightarrow \int{\sin x\sin 2x\sin 3x}dx=\frac{1}{2}\int{\left( \sin x\cos \left( -x \right)-\sin x\cos \left( 5x \right) \right)dx}$
$\Rightarrow \int{\sin x\sin 2x\sin 3x}dx=\frac{1}{2}\int{\left( \sin x\cos x-\sin x\cos 5x \right)dx}$
$\Rightarrow \int{\sin x\sin 2x\sin 3x}dx=\frac{1}{2}\int{\frac{\sin 2x}{2}dx-\frac{1}{2}\int{\left( \sin x\cos 5x \right)}dx}$
$\Rightarrow \int{\sin x\sin 2x\sin 3x}dx=\frac{1}{4}\left( \frac{-\cos 2x}{2} \right)-\frac{1}{2}\int{\left\{ \frac{1}{2}\left( \sin \left( x+5x \right)+\sin \left( x-5x \right) \right) \right\}dx}$
$\Rightarrow \int{\sin x\sin 2x\sin 3x}dx=\frac{-\cos 2x}{8}-\frac{1}{4}\int{\left\{ \left( \sin 6x+\sin \left( -4x \right) \right) \right\}dx}$
$\Rightarrow \int{\sin x\sin 2x\sin 3x}dx=\frac{-\cos 2x}{8}-\frac{1}{4}\int{\left\{ \left( \sin 6x+\sin 4x \right) \right\}dx}$
$\Rightarrow \int{\sin x\sin 2x\sin 3x}dx=\frac{-\cos 2x}{8}-\frac{1}{8}\left[ \frac{-\cos 6x}{3}+\frac{\cos 4x}{4} \right]+C$
$\therefore \int{\sin x\sin 2x\sin 3x}dx=\frac{1}{8}\left[ \frac{\cos 6x}{3}-\frac{\cos 4x}{4}-\cos 2x \right]+C$
7. Solve the following: $\sin 4x\sin 8x$.
Ans: Given expression $\sin 4x\sin 8x$.
Using the identity $\sin A\sin B=\frac{1}{2}\cos \left( A-B \right)-\cos \left( A+B \right)$, given expression can be written as
$\Rightarrow \sin 4x\sin 8x=\frac{1}{2}\cos \left( 4x-8x \right)-\cos \left( 4x+8x \right)$
Integration of given expression is
$\Rightarrow \int{\sin 4x\sin 8x}dx=\frac{1}{2}\int{\left( \cos \left( -4x \right)-\cos \left( 12x \right) \right)dx}$
$\Rightarrow \int{\sin 4x\sin 8x}dx=\frac{1}{2}\int{\left( \cos 4x-\cos 12x \right)dx}$
$\therefore \int{\sin 4x\sin 8x}dx=\frac{1}{2}\left[ \frac{\sin 4x}{4}-\frac{\sin 12x}{12} \right]+C$
8. Solve the following: $\frac{1-\cos x}{1+\cos x}$.
Ans: Given expression $\frac{1-\cos x}{1+\cos x}$.
Using the identities $2{{\sin }^{2}}\frac{x}{2}=1-\cos x$ and $\cos x=2{{\cos }^{2}}\frac{x}{2}-1$ given expression can be written as
$\Rightarrow \frac{1-\cos x}{1+\cos x}=\frac{2{{\sin }^{2}}\frac{x}{2}}{2{{\cos }^{2}}\frac{x}{2}}$
$\Rightarrow \frac{1-\cos x}{1+\cos x}={{\tan }^{2}}\frac{x}{2}$
Integration of given expression is
$\Rightarrow \int{\frac{1-\cos x}{1+\cos x}dx}=\int{\left[ {{\tan }^{2}}\frac{x}{2} \right]dx}$
$\Rightarrow \int{\frac{1-\cos x}{1+\cos x}dx}=\int{\left[ {{\sec }^{2}}\frac{x}{2}-1 \right]dx}$
$\Rightarrow \int{\frac{1-\cos x}{1+\cos x}dx}=\left[ \frac{\tan \frac{x}{2}}{\frac{1}{2}}-x \right]+C$
$\therefore \int{\frac{1-\cos x}{1+\cos x}dx}=2\tan \frac{x}{2}-x+C$
9. Solve the following: $\frac{\cos x}{1+\cos x}$.
Ans: Given expression $\frac{\cos x}{1+\cos x}$.
Using the identity $\cos x={{\cos }^{2}}\frac{x}{2}-{{\sin }^{2}}\frac{x}{2}$ and $\cos x=2{{\cos }^{2}}\frac{x}{2}-1$ given expression can be written as
$\Rightarrow \frac{\cos x}{1+\cos x}=\frac{{{\cos }^{2}}\frac{x}{2}-{{\sin }^{2}}\frac{x}{2}}{2{{\cos }^{2}}\frac{x}{2}}$
$\Rightarrow \frac{\cos x}{1+\cos x}=\frac{1}{2}\left[ 1-\frac{{{\sin }^{2}}\frac{x}{2}}{{{\cos }^{2}}\frac{x}{2}} \right]$
$\Rightarrow \frac{\cos x}{1+\cos x}=\frac{1}{2}\left[ 1-{{\tan }^{2}}\frac{x}{2} \right]$
Integration of given expression is
$\Rightarrow \int{\frac{\cos x}{1+\cos x}dx}=\frac{1}{2}\int{\left[ 1-{{\tan }^{2}}\frac{x}{2} \right]dx}$
$\Rightarrow \int{\frac{\cos x}{1+\cos x}dx}=\frac{1}{2}\int{\left[ 1-{{\sec }^{2}}\frac{x}{2}+1 \right]dx}$
$\Rightarrow \int{\frac{\cos x}{1+\cos x}dx}=\frac{1}{2}\int{\left[ 2-{{\sec }^{2}}\frac{x}{2} \right]dx}$
$\Rightarrow \int{\frac{\cos x}{1+\cos x}dx}=\frac{1}{2}\left[ 2x-\frac{\tan \frac{x}{2}}{\frac{1}{2}} \right]+C$
$\therefore \int{\frac{\cos x}{1+\cos x}dx}=x-\tan \frac{x}{2}+C$
10. Solve the following: ${{\sin }^{4}}x$.
Ans: Given expression ${{\sin }^{4}}x$.
Given expression can be written as ${{\sin }^{4}}x={{\sin }^{2}}x{{\sin }^{2}}x$
$\Rightarrow {{\sin }^{4}}x=\left( \frac{1-\cos 2x}{2} \right)\left( \frac{1-\cos 2x}{2} \right)$
$\Rightarrow {{\sin }^{4}}x=\frac{1}{4}{{\left( 1-\cos 2x \right)}^{2}}$
$\Rightarrow {{\sin }^{4}}x=\frac{1}{4}\left( 1+{{\cos }^{2}}2x-2\cos 2x \right)$
$\Rightarrow {{\sin }^{4}}x=\frac{1}{4}\left( 1+\frac{1+\cos 4x}{2}-2\cos 2x \right)$
$\Rightarrow {{\sin }^{4}}x=\frac{1}{4}\left( 1+\frac{1}{2}+\frac{\cos 4x}{2}-2\cos 2x \right)$
$\Rightarrow {{\sin }^{4}}x=\frac{1}{4}\left( \frac{3}{2}+\frac{1}{2}\cos 4x-2\cos 2x \right)$
Integration of given expression is
$\Rightarrow \int{{{\sin }^{4}}x}dx=\frac{1}{4}\int{\left( \frac{3}{2}+\frac{1}{2}\cos 4x-2\cos 2x \right)}dx$
$\Rightarrow \int{{{\sin }^{4}}x}dx=\frac{1}{4}\left[ \frac{3}{2}x+\frac{\sin 4x}{8}-\sin 2x \right]+C$
$\therefore \int{{{\sin }^{4}}x}dx=\frac{3x}{8}+\frac{\sin 4x}{32}-\frac{1}{4}\sin 2x+C$
11. Solve the following: ${{\cos }^{4}}2x$.
Ans: Given expression ${{\cos }^{4}}2x$.
Given expression can be written as
${{\cos }^{4}}2x={{\left( {{\cos }^{2}}2x \right)}^{2}}$
$\Rightarrow {{\cos }^{4}}2x={{\left( \frac{1+\cos 4x}{2} \right)}^{2}}$
$\Rightarrow {{\cos }^{4}}2x=\frac{1}{4}\left( 1+{{\cos }^{2}}4x+2\cos 4x \right)$
$\Rightarrow {{\cos }^{4}}2x=\frac{1}{4}\left( 1+\frac{1+\cos 8x}{2}+2\cos 4x \right)$
\[\Rightarrow {{\cos }^{4}}2x=\frac{1}{4}\left( 1+\frac{1}{2}+\frac{\cos 8x}{2}+2\cos 4x \right)\]
\[\Rightarrow {{\cos }^{4}}2x=\frac{1}{4}\left( \frac{3}{2}+\frac{\cos 8x}{2}+2\cos 4x \right)\]
Integration of given expression is
\[\Rightarrow \int{{{\cos }^{4}}2xdx}=\int{\left( \frac{3}{8}+\frac{\cos 8x}{8}+\frac{\cos 4x}{2} \right)dx}\]
\[\therefore \int{{{\cos }^{4}}2xdx}=\frac{3}{8}x+\frac{\sin 8x}{64}+\frac{\sin 4x}{8}+C\]
12. Solve the following: $\frac{{{\sin }^{2}}x}{1+\cos x}$.
Ans: Given expression $\frac{{{\sin }^{2}}x}{1+\cos x}$.
By applying the identity $\sin x=2\sin \frac{x}{2}\cos \frac{x}{2}$ and $\cos x=2{{\cos }^{2}}\frac{x}{2}-1$, given expression can be written as
$\Rightarrow \frac{{{\sin }^{2}}x}{1+\cos x}=\frac{{{\left( 2\sin \frac{x}{2}\cos \frac{x}{2} \right)}^{2}}}{2{{\cos }^{2}}\frac{x}{2}}$
$\Rightarrow \frac{{{\sin }^{2}}x}{1+\cos x}=\frac{4{{\sin }^{2}}\frac{x}{2}{{\cos }^{2}}\frac{x}{2}}{2{{\cos }^{2}}\frac{x}{2}}$
$\Rightarrow \frac{{{\sin }^{2}}x}{1+\cos x}=2{{\sin }^{2}}\frac{x}{2}$
$\Rightarrow \frac{{{\sin }^{2}}x}{1+\cos x}=1-\cos x$
Integration of given expression is
$\Rightarrow \int{\frac{{{\sin }^{2}}x}{1+\cos x}dx}=\int{1dx-\int{\cos xdx}}$
$\therefore \int{\frac{{{\sin }^{2}}x}{1+\cos x}dx}=x-\sin x+C$
13. Solve the following: $\frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }$.
Ans: Given expression $\frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }$.
We can apply the identity $\cos C-\cos D=-2\sin \frac{C+D}{2}\sin \frac{C-D}{2}$ , we get
$\Rightarrow \frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }=\frac{-2\sin \frac{2x+2\alpha }{2}\sin \frac{2x-2\alpha }{2}}{-2\sin \frac{x+\alpha }{2}\sin \frac{x-\alpha }{2}}$
$\Rightarrow \frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }=\frac{\sin \frac{2\left( x+\alpha \right)}{2}\sin \frac{2\left( x-\alpha \right)}{2}}{\sin \frac{x+\alpha }{2}\sin \frac{x-\alpha }{2}}$
$\Rightarrow \frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }=\frac{\sin \left( x+\alpha \right)\sin \left( x-\alpha \right)}{\sin \frac{x+\alpha }{2}\sin \frac{x-\alpha }{2}}$
We can apply the identity $\sin 2x=2\sin x\cos x$, we get
$\Rightarrow \frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }=\frac{\left[ 2\sin \frac{x+\alpha }{2}\cos \frac{x+\alpha }{2} \right]\left[ 2\sin \frac{x-\alpha }{2}\cos \frac{x-\alpha }{2} \right]}{\sin \frac{x+\alpha }{2}\sin \frac{x-\alpha }{2}}$
$\Rightarrow \frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }=4\cos \frac{x+\alpha }{2}\cos \frac{x-\alpha }{2}$
$\Rightarrow \frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }=2\left[ \cos \frac{x+\alpha }{2}+\frac{x-\alpha }{2}+\cos \frac{x+\alpha }{2}-\frac{x-\alpha }{2} \right]$
$\Rightarrow \frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }=2\left[ \cos x+\cos \alpha \right]$
Integration of given expression is
$\Rightarrow \int{\frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }dx}=2\int{\left[ \cos x+\cos \alpha \right]}dx$
$\therefore \int{\frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }dx}=2\left[ \sin x+x\cos \alpha \right]+C$
14. Solve the following: $\frac{\cos x-\sin x}{1+\sin 2x}$.
Ans: Given expression $\frac{\cos x-\sin x}{1+\sin 2x}$.
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$.
Given expression can be written as
$\Rightarrow \frac{\cos x-\sin x}{1+\sin 2x}=\frac{\cos x-\sin x}{{{\sin }^{2}}x+{{\cos }^{2}}x+\sin 2x}$ .
We can apply the identity $\sin 2x=2\sin x\cos x$, we get
$\Rightarrow \frac{\cos x-\sin x}{1+\sin 2x}=\frac{\cos x-\sin x}{{{\sin }^{2}}x+{{\cos }^{2}}x+2\sin x\cos x}$
$\Rightarrow \frac{\cos x-\sin x}{1+\sin 2x}=\frac{\cos x-\sin x}{{{\left( \sin x+\cos x \right)}^{2}}}$
Let $\sin x+\cos x=t$
$\therefore \left( \cos x-\sin x \right)dx=dt$
Integration of given expression is
$\Rightarrow \int{\frac{\cos x-\sin x}{1+\sin 2x}dx=\int{\frac{\cos x-\sin x}{{{\left( \sin x+\cos x \right)}^{2}}}dx}}$
$\Rightarrow \int{\frac{\cos x-\sin x}{1+\sin 2x}dx=\int{\frac{dt}{{{t}^{2}}}}}$
$\Rightarrow \int{\frac{\cos x-\sin x}{1+\sin 2x}dx=\int{{{t}^{-2}}dt}}$
\[\Rightarrow \int{\frac{\cos x-\sin x}{1+\sin 2x}dx=-{{t}^{-1}}+C}\]
\[\Rightarrow \int{\frac{\cos x-\sin x}{1+\sin 2x}dx=-\frac{1}{t}+C}\]
Substitute $\sin x+\cos x=t$,
\[\therefore \int{\frac{\cos x-\sin x}{1+\sin 2x}dx=-\frac{1}{\sin x+\cos x}+C}\]
15. Solve the following: ${{\tan }^{3}}2x\sec 2x$.
Ans: Given expression ${{\tan }^{3}}2x\sec 2x$.
Given expression can be written as
${{\tan }^{3}}2x\sec 2x={{\tan }^{2}}2x\tan 2x\sec 2x$
$\Rightarrow {{\tan }^{3}}2x\sec 2x=\left( {{\sec }^{2}}2x-1 \right)\tan 2x\sec 2x$
$\Rightarrow {{\tan }^{3}}2x\sec 2x={{\sec }^{2}}2x\tan 2x\sec 2x-\tan 2x\sec 2x$
Integration of given expression is
$\Rightarrow \int{{{\tan }^{3}}2x\sec 2xdx}=\int{{{\sec }^{2}}2x\tan 2x\sec 2xdx}-\int{\tan 2x\sec 2xdx}$
$\Rightarrow \int{{{\tan }^{3}}2x\sec 2xdx}=\int{{{\sec }^{2}}2x\tan 2x\sec 2xdx}-\frac{\sec 2x}{2}+C$
Let $\sec 2x=t$
$\therefore 2\sec 2x\tan 2xdx=dt$
Above integral becomes
\[\Rightarrow \int{{{\tan }^{3}}2x\sec 2xdx}=\frac{1}{2}\int{{{t}^{2}}dt}-\frac{\sec 2x}{2}+C\]
\[\Rightarrow \int{{{\tan }^{3}}2x\sec 2xdx}=\frac{{{t}^{3}}}{6}-\frac{\sec 2x}{2}+C\]
Substitute $\sec 2x=t$,
\[\therefore \int{{{\tan }^{3}}2x\sec 2xdx}=\frac{{{\left( \sec 2x \right)}^{3}}}{6}-\frac{\sec 2x}{2}+C\]
16. Solve the following: ${{\tan }^{4}}x$.
Ans: Given expression ${{\tan }^{4}}x$.
Given expression can be written as
$\Rightarrow {{\tan }^{4}}x={{\tan }^{2}}x{{\tan }^{2}}x$
$\Rightarrow {{\tan }^{4}}x=\left( {{\sec }^{2}}x-1 \right){{\tan }^{2}}x$
$\Rightarrow {{\tan }^{4}}x={{\sec }^{2}}x{{\tan }^{2}}x-{{\tan }^{2}}x$
$\Rightarrow {{\tan }^{4}}x={{\sec }^{2}}x{{\tan }^{2}}x-\left( {{\sec }^{2}}x-1 \right)$
$\Rightarrow {{\tan }^{4}}x={{\sec }^{2}}x{{\tan }^{2}}x-{{\sec }^{2}}x+1$
Integration of given expression is
$\Rightarrow \int{{{\tan }^{4}}xdx}=\int{\left( {{\sec }^{2}}x{{\tan }^{2}}x-{{\sec }^{2}}x+1 \right)}dx$
$\Rightarrow \int{{{\tan }^{4}}xdx}=\int{\left( {{\sec }^{2}}x{{\tan }^{2}}x \right)}dx-\int{{{\sec }^{2}}xdx+\int{1dx}}$
$\Rightarrow \int{{{\tan }^{4}}xdx}=\int{{{\sec }^{2}}x{{\tan }^{2}}x}dx-\tan x+x+C$
Let $\tan x=t$
$\therefore {{\sec }^{2}}xdx=dt$
$\Rightarrow \int{{{\tan }^{4}}xdx}=\int{{{t}^{2}}}dt-\tan x+x+C$
$\Rightarrow \int{{{\tan }^{4}}xdx}=\frac{{{t}^{3}}}{3}-\tan x+x+C$
Substitute $\tan x=t$,
$\therefore \int{{{\tan }^{4}}xdx}=\frac{1}{3}{{\tan }^{3}}x-\tan x+x+C$
17. Solve the following: $\frac{{{\sin }^{3}}x+{{\cos }^{3}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}$.
Ans: Given expression $\frac{{{\sin }^{3}}x+{{\cos }^{3}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}$.
Given expression can be written as
$\Rightarrow \frac{{{\sin }^{3}}x+{{\cos }^{3}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}=\frac{{{\sin }^{3}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}+\frac{{{\cos }^{3}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}$
$\Rightarrow \frac{{{\sin }^{3}}x+{{\cos }^{3}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}=\frac{\sin x}{{{\cos }^{2}}x}+\frac{\cos x}{{{\sin }^{2}}x}$
$\Rightarrow \frac{{{\sin }^{3}}x+{{\cos }^{3}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}=\tan x\sec x+\cot xcosecx$
Integration of given expression is
$\Rightarrow \int{\frac{{{\sin }^{3}}x+{{\cos }^{3}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}=\int{\tan x\sec xdx}+\int{\cot x\operatorname{cosecx}dx}$
$\therefore \int{\frac{{{\sin }^{3}}x+{{\cos }^{3}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}=\sec x-cosecx+C$
18. Solve the following: $\frac{\cos 2x+2{{\sin }^{2}}x}{{{\cos }^{2}}x}$.
Ans: Given expression $\frac{\cos 2x+2{{\sin }^{2}}x}{{{\cos }^{2}}x}$.
By applying the identity $\cos 2x=1-2{{\sin }^{2}}x$, we get
$\Rightarrow \frac{\cos 2x+2{{\sin }^{2}}x}{{{\cos }^{2}}x}=\frac{\cos 2x+1-\cos 2x}{{{\cos }^{2}}x}$
$\Rightarrow \frac{\cos 2x+2{{\sin }^{2}}x}{{{\cos }^{2}}x}=\frac{1}{{{\cos }^{2}}x}$
$\Rightarrow \frac{\cos 2x+2{{\sin }^{2}}x}{{{\cos }^{2}}x}={{\sec }^{2}}x$
Integration of given expression is
$\Rightarrow \int{\frac{\cos 2x+2{{\sin }^{2}}x}{{{\cos }^{2}}x}}dx=\int{{{\sec }^{2}}xdx}$
$\therefore \int{\frac{\cos 2x+2{{\sin }^{2}}x}{{{\cos }^{2}}x}}dx=\tan x+C$
19. Solve the following: $\frac{1}{\sin x{{\cos }^{3}}x}$.
Ans: Given expression $\frac{1}{\sin x{{\cos }^{3}}x}$.
We can apply the identity ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, we get
$\Rightarrow \frac{1}{\sin x{{\cos }^{3}}x}=\frac{{{\sin }^{2}}x+{{\cos }^{2}}x}{\sin x{{\cos }^{3}}x}$
$\Rightarrow \frac{1}{\sin x{{\cos }^{3}}x}=\frac{{{\sin }^{2}}x}{\sin x{{\cos }^{3}}x}+\frac{{{\cos }^{2}}x}{\sin x{{\cos }^{3}}x}$
$\Rightarrow \frac{1}{\sin x{{\cos }^{3}}x}=\frac{\sin x}{{{\cos }^{3}}x}+\frac{1}{\sin x\cos x}$
$\Rightarrow \frac{1}{\sin x{{\cos }^{3}}x}=\tan x{{\sec }^{2}}x+\frac{{{\cos }^{2}}x}{\frac{\sin x\cos x}{{{\cos }^{2}}x}}$
$\Rightarrow \frac{1}{\sin x{{\cos }^{3}}x}=\tan x{{\sec }^{2}}x+\frac{{{\sec }^{2}}x}{\tan x}$
Integration of given expression is
$\Rightarrow \int{\frac{1}{\sin x{{\cos }^{3}}x}}dx=\int{\tan x{{\sec }^{2}}x}dx+\int{\frac{{{\sec }^{2}}x}{\tan x}}dx$
Let $\tan x=t$
$\therefore {{\sec }^{2}}xdx=dt$
\[\Rightarrow \int{\frac{1}{\sin x{{\cos }^{3}}x}}dx=\int{t}dt+\int{\frac{1}{\operatorname{t}}}dt\]
\[\Rightarrow \int{\frac{1}{\sin x{{\cos }^{3}}x}}dx=\frac{{{t}^{2}}}{2}+\log \left| t \right|+C\]
Substitute $\tan x=t$,
\[\therefore \int{\frac{1}{\sin x{{\cos }^{3}}x}}dx=\frac{1}{2}{{\tan }^{2}}x+\log \left| \tan x \right|+C\]
20. Solve the following: $\frac{\cos 2x}{{{\left( \cos x+\sin x \right)}^{2}}}$.
Ans: Given expression $\frac{\cos 2x}{{{\left( \cos x+\sin x \right)}^{2}}}$.
Given expression can be written as
$\Rightarrow \frac{\cos 2x}{{{\left( \cos x+\sin x \right)}^{2}}}=\frac{\cos 2x}{{{\cos }^{2}}x+{{\sin }^{2}}x+2\sin x\cos x}$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ and $2\sin x\cos x=\sin 2x$, we get
$\Rightarrow \frac{\cos 2x}{{{\left( \cos x+\sin x \right)}^{2}}}=\frac{\cos 2x}{1+\sin 2x}$
Integration of given expression is
$\Rightarrow \int{\frac{\cos 2x}{{{\left( \cos x+\sin x \right)}^{2}}}dx}=\int{\frac{\cos 2x}{1+\sin 2x}dx}$
Let $1+\sin 2x=t$
$\therefore 2\cos 2xdx=dt$
Integration becomes
$\Rightarrow \int{\frac{\cos 2x}{{{\left( \cos x+\sin x \right)}^{2}}}dx}=\frac{1}{2}\int{\frac{1}{t}dt}$
$\Rightarrow \int{\frac{\cos 2x}{{{\left( \cos x+\sin x \right)}^{2}}}dx}=\frac{1}{2}\log \left| t \right|+C$
Substitute $1+\sin 2x=t$
$\Rightarrow \int{\frac{\cos 2x}{{{\left( \cos x+\sin x \right)}^{2}}}dx}=\frac{1}{2}\log \left| 1+\sin 2x \right|+C$
$\Rightarrow \int{\frac{\cos 2x}{{{\left( \cos x+\sin x \right)}^{2}}}dx}=\frac{1}{2}\log \left| {{\left( \cos x+\sin x \right)}^{2}} \right|+C$
$\therefore \int{\frac{\cos 2x}{{{\left( \cos x+\sin x \right)}^{2}}}dx}=\log \left| \left( \cos x+\sin x \right) \right|+C$
21. Solve the following: ${{\sin }^{-1}}\left( \cos x \right)$.
Ans: Given expression ${{\sin }^{-1}}\left( \cos x \right)$.
Let $\cos x=t$
$\therefore \sin x=\sqrt{1-{{t}^{2}}}$
$\Rightarrow -\sin xdx=dt$
$\Rightarrow dx=-\frac{dt}{\sin x}$
$\Rightarrow dx=-\frac{dt}{\sqrt{1-{{t}^{2}}}}$
Integration of given expression is
$\Rightarrow \int{{{\sin }^{-1}}\left( \cos x \right)dx}=\int{{{\sin }^{-1}}t\left( \frac{-dt}{\sqrt{1-{{t}^{2}}}} \right)}$
$\Rightarrow \int{{{\sin }^{-1}}\left( \cos x \right)dx}=-\int{\left( \frac{{{\sin }^{-1}}t}{\sqrt{1-{{t}^{2}}}} \right)dt}$
Let ${{\sin }^{-1}}t=u$
$\Rightarrow \frac{1}{\sqrt{1-{{t}^{2}}}}dt=du$
Integration becomes
$\Rightarrow \int{{{\sin }^{-1}}\left( \cos x \right)dx}=\int{4du}$
$\Rightarrow \int{{{\sin }^{-1}}\left( \cos x \right)dx}=-\frac{{{u}^{2}}}{2}+C$
Substitute ${{\sin }^{-1}}t=u$
$\Rightarrow \int{{{\sin }^{-1}}\left( \cos x \right)dx}=-\frac{{{\left( {{\sin }^{-1}}t \right)}^{2}}}{2}+C$
Substitute $\cos x=t$
$\Rightarrow \int{{{\sin }^{-1}}\left( \cos x \right)dx}=-\frac{{{\left[ {{\sin }^{-1}}\left( \cos x \right) \right]}^{2}}}{2}+C$ ……..(1)
We know that ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\frac{\pi }{2}$
$\therefore {{\sin }^{-1}}\left( \cos x \right)=\frac{\pi }{2}-{{\cos }^{-1}}\left( \cos x \right)=\left( \frac{\pi }{2}-x \right)$
Substitute in eq. (1), we get
$\Rightarrow \int{{{\sin }^{-1}}\left( \cos x \right)dx}=\frac{-{{\left( \frac{\pi }{2}-x \right)}^{2}}}{2}+C$
$\Rightarrow \int{{{\sin }^{-1}}\left( \cos x \right)dx}=\frac{1}{2}\left( \frac{{{\pi }^{2}}}{2}+{{x}^{2}}-\pi x \right)+C$
$\Rightarrow \int{{{\sin }^{-1}}\left( \cos x \right)dx}=-\frac{{{\pi }^{2}}}{4}-\frac{{{x}^{2}}}{2}+\frac{1}{2}\pi x+C$
$\Rightarrow \int{{{\sin }^{-1}}\left( \cos x \right)dx}=\frac{\pi x}{2}-\frac{{{x}^{2}}}{2}+\left( C-\frac{{{\pi }^{2}}}{4} \right)$
$\therefore \int{{{\sin }^{-1}}\left( \cos x \right)dx}=\frac{\pi x}{2}-\frac{{{x}^{2}}}{2}+{{C}_{1}}$
22. Solve the following: $\frac{1}{\cos \left( x-a \right)\cos \left( x-b \right)}$.
Ans: Given expression $\frac{1}{\cos \left( x-a \right)\cos \left( x-b \right)}$.
Given expression can be written as
$\Rightarrow \frac{1}{\cos \left( x-a \right)\cos \left( x-b \right)}=\frac{1}{\sin \left( a-b \right)}\left[ \frac{\sin \left( a-b \right)}{\cos \left( x-a \right)\cos \left( x-b \right)} \right]$
$\Rightarrow \frac{1}{\cos \left( x-a \right)\cos \left( x-b \right)}=\frac{1}{\sin \left( a-b \right)}\left[ \frac{\sin \left[ \left( x-b \right)-\left( x-a \right) \right]}{\cos \left( x-a \right)\cos \left( x-b \right)} \right]$
$\Rightarrow \frac{1}{\cos \left( x-a \right)\cos \left( x-b \right)}=\frac{1}{\sin \left( a-b \right)}\left[ \frac{\sin \left( x-b \right)\cos \left( x-a \right)-\cos \left( x-b \right)\sin \left( x-a \right)}{\cos \left( x-a \right)\cos \left( x-b \right)} \right]$
$\Rightarrow \frac{1}{\cos \left( x-a \right)\cos \left( x-b \right)}=\frac{1}{\sin \left( a-b \right)}\left[ \tan \left( x-b \right)-\tan \left( x-b \right) \right]$
Integration of given expression is
$\Rightarrow \int{\frac{1}{\cos \left( x-a \right)\cos \left( x-b \right)}dx}=\int{\frac{1}{\sin \left( a-b \right)}\left[ \tan \left( x-b \right)-\tan \left( x-b \right) \right]dx}$
$\Rightarrow \int{\frac{1}{\cos \left( x-a \right)\cos \left( x-b \right)}dx}=\int{\frac{1}{\sin \left( a-b \right)}\left[ -\log \left| \cos \left( x-b \right) \right|+\log \cos \left( x-a \right) \right]}$
$\Rightarrow \int{\frac{1}{\cos \left( x-a \right)\cos \left( x-b \right)}dx}=\int{\frac{1}{\sin \left( a-b \right)}\left[ \log \left| \frac{\cos \left( x-a \right)}{\cos \left( x-b \right)} \right| \right]}+C$
23. Solve the following: $\int{\frac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}$ is equal to
$\tan x+\cot x+C$
$\tan x+cosecx+C$
$-\tan x+\cot x+C$
$\tan x+\sec x+C$
Ans: Given expression $\int{\frac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}$.
Given expression can be written as
$\Rightarrow \int{\frac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}=\int{\frac{{{\sin }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}-\int{\frac{{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}$
$\Rightarrow \int{\frac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}=\int{{{\sec }^{2}}xdx}-\int{cose{{c}^{2}}xdx}$
$\therefore \int{\frac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}=\tan x+\cot x+C$
Therefore, option A is the correct answer.
24. Solve the following: $\int{\frac{{{e}^{x}}\left( 1+x \right)}{{{\cos }^{2}}\left( {{e}^{x}}x \right)}dx}$ equals
$-\cot \left( e{{x}^{x}} \right)+C$
$\tan \left( x{{e}^{x}} \right)+C$
$\tan \left( {{e}^{x}} \right)+C$
$\cot \left( {{e}^{x}} \right)+C$
Ans: Given expression $\int{\frac{{{e}^{x}}\left( 1+x \right)}{{{\cos }^{2}}\left( {{e}^{x}}x \right)}dx}$.
Let ${{e}^{x}}x=t$
$\therefore \left( {{e}^{x}}.x+{{e}^{x}}.1 \right)dx=dt$
$\Rightarrow {{e}^{x}}\left( x+1 \right)dx=dt$
Integration of given expression is
$\Rightarrow \int{\frac{{{e}^{x}}\left( 1+x \right)}{{{\cos }^{2}}\left( {{e}^{x}}x \right)}dx}=\int{\frac{dt}{{{\cos }^{2}}t}}$
\[\Rightarrow \int{\frac{{{e}^{x}}\left( 1+x \right)}{{{\cos }^{2}}\left( {{e}^{x}}x \right)}dx}=\int{{{\sec }^{2}}t}dt\]
\[\Rightarrow \int{\frac{{{e}^{x}}\left( 1+x \right)}{{{\cos }^{2}}\left( {{e}^{x}}x \right)}dx}=\tan t+C\]
Substitute ${{e}^{x}}x=t$,
\[\therefore \int{\frac{{{e}^{x}}\left( 1+x \right)}{{{\cos }^{2}}\left( {{e}^{x}}x \right)}dx}=\tan \left( {{e}^{x}}x \right)+C\]
Therefore, option B is the correct answer.
Conclusion
Chapter 7 of Class 12 Mathematics, focusing on Integrals, is crucial for understanding calculus. Exercise 7.3 Class 12 Maths delves into techniques of integration, which are essential for solving complex problems in higher mathematics. Important topics include integration by substitution, integration by parts, and partial fractions. Mastery of these methods is vital, as they are frequently tested in exams. Students should focus on practicing various types of problems, understanding the underlying principles, and applying the correct techniques in class 12 maths ex 7.3.
Class 12 Maths Chapter 7: Exercises Breakdown
S.No. | Chapter 7 - Integrals Exercises in PDF Format | |
1 | Class 12 Maths Chapter 7 Exercise 7.1 - 22 Questions & Solutions (21 Short Answers, 1 MCQs) | |
2 | Class 12 Maths Chapter 7 Exercise 7.2 - 39 Questions & Solutions (37 Short Answers, 2 MCQs) | |
3 | Class 12 Maths Chapter 7 Exercise 7.4 - 25 Questions & Solutions (23 Short Answers, 2 MCQs) | |
4 | Class 12 Maths Chapter 7 Exercise 7.5 - 23 Questions & Solutions (21 Short Answers, 2 MCQs) | |
5 | Class 12 Maths Chapter 7 Exercise 7.6 - 24 Questions & Solutions (22 Short Answers, 2 MCQs) | |
6 | Class 12 Maths Chapter 7 Exercise 7.7 - 11 Questions & Solutions (9 Short Answers, 2 MCQs) | |
7 | Class 12 Maths Chapter 7 Exercise 7.8 - 6 Questions & Solutions (6 Short Answers) | |
8 | Class 12 Maths Chapter 7 Exercise 7.9 - 22 Questions & Solutions (20 Short Answers, 2 MCQs) | |
9 | Class 12 Maths Chapter 7 Exercise 7.10 - 10 Questions & Solutions (8 Short Answers, 2 MCQs) | |
10 | Class 12 Maths Chapter 7 Miscellaneous Exercise - 40 Questions & Solutions |
CBSE Class 12 Maths Chapter 7 Other Study Materials
S.No. | Important Links for Chapter 7 Integrals |
1 | |
2 | |
3 | |
4 |
NCERT Solutions for Class 12 Maths | Chapter-wise List
Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.
S.No. | NCERT Solutions Class 12 Maths Chapter-wise List |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 |
Related Links for NCERT Class 12 Maths in Hindi
Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.
S.No. | Related NCERT Solutions for Class 12 Maths |
1 | |
2 |
Important Related Links for NCERT Class 12 Maths
S.No | Important Resources Links for Class 12 Maths |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 |
FAQs on NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3
1. What is the main technique for solving problems in NCERT Class 12 Maths Chapter 7, Exercise 7.3?
The primary technique required for Exercise 7.3 is integration using trigonometric identities. The NCERT solutions demonstrate how to simplify complex trigonometric integrands by converting them into standard, integrable forms. For example, expressions like sin²x, cos³x, or sin(Ax)cos(Bx) are first transformed using specific identities before the integration is performed.
2. How do the NCERT Solutions for Class 12 Maths help in solving integrals of trigonometric powers like sin⁴x or tan³x?
The solutions provide a detailed, step-by-step method for these problems. The general approach is as follows:
- First, they show how to break down the higher power using fundamental identities (e.g., sin⁴x = (sin²x)²).
- Next, they use power-reducing or Pythagorean identities like sin²x = (1 - cos 2x)/2 or tan²x = sec²x - 1 to transform the expression into simpler terms.
- Finally, they integrate each term separately to arrive at the final answer, ensuring every step aligns with the CBSE 2025–26 syllabus methodology.
3. For the CBSE 2025-26 board exam, is it enough to just practice the questions from Exercise 7.3?
While Exercise 7.3 is crucial for mastering trigonometric integrals, it is essential to practice all exercises in Chapter 7. Each exercise in the NCERT book introduces a distinct and important integration technique:
- Exercise 7.2: Focuses on Integration by Substitution.
- Exercise 7.5: Focuses on Integration by Partial Fractions.
- Exercise 7.6: Focuses on Integration by Parts.
4. Why is it necessary to write '+C' (the constant of integration) in every indefinite integral solution in Chapter 7?
Adding the constant of integration, '+C', is fundamental because the derivative of any constant is zero. This implies that for any given function, there are infinite possible antiderivatives, all differing by a constant value. In the CBSE board exam, forgetting to add '+C' in an indefinite integral problem is considered a conceptual error and can lead to a loss of marks, as it represents an incomplete solution.
5. What is a common mistake when solving problems from Exercise 7.3, and how do the NCERT solutions help avoid it?
A common mistake is applying the wrong trigonometric identity or making an algebraic error during the simplification process before integration. The NCERT solutions help prevent this by clearly stating which identity is being used (e.g., 2sinAcosB = sin(A+B) + sin(A-B)) and showing the transformation in a clean, step-by-step format. This methodical approach helps in self-correction and reinforces the correct problem-solving process.
6. Beyond just getting the final answer, what should I learn from the step-by-step NCERT Solutions for Integrals?
You should focus on the problem-solving approach and the logic behind each step. Observe how a complex problem is identified and broken down, why a particular substitution is chosen, or which trigonometric identity is applied in a specific context. Understanding this underlying methodology is more important than memorising solutions, as it equips you to solve unfamiliar or twisted problems in the CBSE board exams.
7. How does mastering the methods in the NCERT solutions for Chapter 7 prepare me for Chapter 8, 'Application of Integrals'?
Chapter 8 requires you to use definite integrals to find the area bounded by curves. The fundamental integration techniques you master in Chapter 7—such as substitution, integration by parts, and using trigonometric identities—are the essential tools needed for this. Without a strong grasp of how to solve integrals from Chapter 7, you cannot correctly evaluate the area-related problems in Chapter 8. These solutions build that crucial foundation.

















