Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 12 Maths Chapter 6 Application Of Derivatives Exercise 6.2 - 2025-26

ffImage
banner

Application Of Derivatives Questions and Answers - Free PDF Download

Exercise 6.2 Class 12 Maths journey, explore the fascinating world of derivatives and their applications. In this chapter, students will discover how derivatives can be used to solve real-world problems and gain deeper insights into various mathematical concepts.

toc-symbolTable of Content
toggle-arrow


Ex 6.2 class 12 focuses on some key applications of derivatives, such as finding the equations of tangents and normals to curves. NCERT Solutions for Class 12 Maths Chapter 6 Application of Derivatives Exercise 6.2 will help students understand how derivatives are used to determine the slope of a curve at a given point, which is crucial for solving problems related to rates of change and optimisation. Working through this exercise Enhances student's ability to apply derivatives in practical scenarios, laying a solid foundation for more advanced topics in calculus.


Glance on NCERT Solutions Class 12 Maths Chapter 6 Exercise 6.2 | Vedantu

  • In class 12 Ex 6.2 deals with analyzing how a function's output values change along with its input values. In simpler terms, it helps you determine if the function is increasing, decreasing, or constant over a specific interval.

  • The core concept revolves around using the derivative of a function to understand its increasing/decreasing behavior. The derivative essentially tells you the slope of the function's graph at any point.

  • A function f(x) is increasing in an interval I if its derivative f'(x) is positive for all x-values in that interval.

  • Conversely, a function f(x) is decreasing in an interval I if its derivative f'(x) is negative for all x-values in that interval.

  • There are 19 questions in Class 12 Maths Ex 6.2 which are fully solved by experts at Vedantu.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Class 12 Maths Chapter 6 Application of Derivatives Exercise 6.2

1. Show, that the function given by $f\left( x \right)=3x+17$ is strictly increasing on $R$.

Ans: Let the two numbers in $R$be ${{x}_{1}}$ and ${{x}_{2}}$.

$ {{x}_{1}}<{{x}_{_{2}}}\Rightarrow 3{{x}_{1}}<3{{x}_{2}} $ 

$ \Rightarrow 3{{x}_{1}}+17<3{{x}_{2}}+17 $ 

$ =f\left( {{x}_{1}} \right)<f\left( {{x}_{2}} \right)$ 

Thus, the function is strictly increasing on $R.$ 

2. Show that the function given $f\left( x \right)={{e}^{2x}}$ is strictly increasing on $R$.

Ans: Let the two numbers in $R$be ${{x}_{1}}$ and ${{x}_{2}}$.

Then, we have: 

$ {{x}_{1}}<{{x}_{2}}\Rightarrow 2{{x}_{1}}<2{{x}_{2}} $ 

$ \Rightarrow {{e}^{2{{x}_{1}}}}<{{e}^{2{{x}_{2}}}} $ 

$ \Rightarrow f\left( {{x}_{1}} \right)<f\left( {{x}_{2}} \right)$ 

Hence, $f$ is strictly increasing on $R.$ 

3. Show that the function given by $f\left( x \right)=\sin x$ is

A) Strictly increasing in $\left( 0,\frac{\pi }{2} \right)$ 

B) Strictly decreasing in $\left( \frac{\pi }{2},\pi  \right)$ 

C) Neither increasing nor decreasing in $\left( 0,n \right)$ 

Ans: The given function is $f\left( x \right)=\sin x$.

$\therefore f'\left( x \right)=\cos x$ 

A) Since for each $x\in \left( 0,\frac{\pi }{2} \right)$, $\cos x>0$, we have $f'\left( x \right)>0$.

Hence, $f$ is strictly increasing in $\left( 0,\frac{\pi }{2} \right)$.

B) Since for each $x\in \left( \frac{\pi }{2},\pi  \right),\cos x<0,$ we have $f'\left( x \right)<0$.

Hence, $f$ is strictly increasing in $\left( \frac{\pi }{2},\pi  \right)$ 

C) It is clear from the results obtained in (A) and (B) that $f$ is neither increasing nor decreasing in $\left( 0,n \right)$.

4. Find the intervals in which the function $f$ given by $f\left( x \right)=2{{x}^{2}}-3x$ is

(A) Strictly increasing

(B) Strictly decreasing

Ans: The function provided is $f\left( x \right)=2{{x}^{2}}-3x$.

  $ f'\left( x \right)=4x-3 $ 

  $ \therefore f'\left( x \right)=0 $ 

  $ \Rightarrow x=\frac{3}{4} $ 

Now, the point $\frac{3}{4}$ divides the real line into two disjoint intervals i.e.,  

$\left( -\infty ,\frac{3}{4} \right)$  and $\left( \frac{3}{4},\infty  \right)$ .

divides the real line into two disjoint intervals

In interval, $\left( -\infty ,\frac{3}{4} \right),f'\left( x \right)=4x-3<0$ 

Hence, the given function $\left( f \right)$ is strictly decreasing in interval $\left( -\infty ,\frac{3}{4} \right)$

In interval, $\left( \frac{3}{4},\infty  \right),f'\left( x \right)=4x-3>0$ 

Hence, the given function $\left( f \right)$ is strictly decreasing in interval $\left( \frac{3}{4},\infty  \right)$

5. Find the intervals in which the function $f$ is given as $f\left( x \right)=2{{x}^{2}}-3{{x}^{2}}-36x+7$ 

(A) strictly increasing

(B) strictly decreasing

 Ans: The given function is

 $ f\left( x \right)=2{{x}^{3}}-3{{x}^{2}}-36x+7 $ 

 $ f'\left( x \right)=6{{x}^{2}}-6x-36 $ 

 $ =6\left( {{x}^{2}}-x-6 \right) $ 

 $ =6\left( x+2 \right)\left( x-3 \right) $ 

 $ \therefore f'\left( x \right)=0 $ 

 $ \Rightarrow x=-2,3 $ 

The points $x=-2,3$ divide the real line into three disjoints intervals 

i.e., $\left( -\infty ,-2 \right),\left( -2,3 \right),$and $\left( 3,\infty  \right)$.

divide the real line into three disjoints intervals

In intervals $\left( -\infty ,-2 \right)$ and $\left( 3,\infty  \right)$, ${f}'\left( x \right)$ is positive while in the interval $\left( -2,3 \right),f'\left( x \right)$ is negative.

Hence, the given function $\left( f \right)$is strictly increasing in intervals $\left( -\infty ,-2 \right)\cup \left( 3,\infty  \right)$ while the function $\left( f \right)$ is strictly decreasing in interval $\left( -2,3 \right)$.

6. Find the intervals in which the following functions are strictly 

increasing or decreasing:

 $ \left( a \right){{x}^{2}}+2x-5 $ 

 $ \left( b \right)10-6x-2{{x}^{2}} $ 

 $ \left( c \right)-2{{x}^{3}}-9{{x}^{2}}-12x+1 $ 

 $ \left( d \right)6-9x-{{x}^{2}} $ 

 $ \left( e \right){{\left( x+1 \right)}^{3}}{{\left( x-3 \right)}^{3}} $ 

Ans:  

a) Given that

$ f\left( x \right)={{x}^{2}}+2x-5 $ 

$ \therefore f'\left( x \right)=2x+2 $ 

Now, 

 $ f'\left( x \right)=0 $ 

 $ \Rightarrow x=-1 $

The real line is divided into two disjoint intervals $\left( -\infty ,-1 \right)and\left( -1,\infty  \right)$ by the point $x=-1$.

In interval $\left( -\infty ,-1 \right),$ 

$\therefore f'\left( x \right)=2x+2<0$ 

Therefore, $f$ is strictly decreasing in the interval $\left( -\infty ,-1 \right)$.

Thus $f$ is strictly decreasing for $x<-1$ 

In interval $\left( -1,\infty  \right),$ 

$\therefore f'\left( x \right)=2x+2>0$ 

Therefore, $f$ is strictly decreasing in interval $\left( -1,\infty  \right)$ 

Thus $f$ is strictly increasing for $x>-1$.

b) Given that,

$ f\left( x \right)=10-6x-2{{x}^{2}} $ 

$ \therefore f'\left( x \right)=-6-4x $ 

Now,

$ f'\left( x \right)=0 $ 

$ \Rightarrow x=\frac{-3}{2} $ 

The real line is divided into two disjoint intervals  $\left( -\infty ,-\frac{3}{2} \right)and\left( -\frac{3}{2},\infty  \right)$ by the point $x=-\frac{3}{2}$.

In interval $\left( -\infty ,-\frac{3}{2} \right)$ i.e., when $x<-\frac{3}{2},f'\left( x \right)=-6-4x<0.$ 

$\therefore f$ is strictly increasing for $x<-\frac{3}{2}$ 

In interval $\left( -\frac{3}{2},\infty  \right)$ i.e., when $x>\frac{3}{2},f'\left( x \right)=-6-4x<0$.

$\therefore f$ is strictly increasing for $x<-\frac{3}{2}$ 

c) Given that,

 $ f\left( x \right)=-2{{x}^{3}}-9{{x}^{2}}-12x+1 $ 

 $ \therefore f'\left( x \right)=-6{{x}^{2}}-18x-12 $ 

 $ =-6\left( {{x}^{2}}+3x+2 \right) $ 

 $ =-6\left( x+1 \right)\left( x+2 \right) $ 

Now,

 $ f'\left( x \right)=0 $ 

 $ \Rightarrow x=-1 $ 

and $x=-2$ 

The real line is divided into three disjoint interval $\left( -\infty ,-2 \right),\left( -2,-1 \right)and\left( -1,\infty  \right)$ by the points $x=-1,-2$  when $x<-2$ and $x>-1$,

$f'\left( x \right)=-6\left( x+1 \right)\left( x+2 \right)<0$ 

$\therefore f$ is strictly increasing for $x<-2<x>-1$ 

Now, in interval $\left( -2,-1 \right)$ i.e., when $-2<x<-1$,

$f'\left( x \right)=-6\left( x+1 \right)\left( x+2 \right)>0$ 

$\therefore f$ is strictly increasing for $-2<x<-1$

d) Given that,

$ f\left( x \right)=6-9x-{{x}^{2}} $ 

$ \therefore f'\left( x \right)=-9-2x $ 

Now, $f'\left( x \right)=0$ gives $x=-\frac{9}{2}$ 

The real line is divided into two disjoint intervals $\left( -\infty ,-\frac{9}{2} \right)and\left( -\frac{9}{2},\infty  \right)$ by the point $x=-\frac{9}{2}$.

In interval $\left( -\infty ,-\frac{9}{2} \right)$ i.e., for $x<\frac{9}{2},$ 

$\therefore f$  is strictly increasing for $x<\frac{9}{2}$

In interval $\left( \frac{9}{2},\infty  \right)$ i.e., for $x<-\frac{9}{2},f'\left( x \right)=-9-2x>0$ 

$\therefore f$  is strictly increasing for $x<-\frac{9}{2}$

In interval $\left( -\frac{9}{2},\infty  \right)$ i.e., for $x>-\frac{9}{2},f'\left( x \right)=-9-2x<0$ 

$\therefore f$  is strictly increasing for $x>-\frac{9}{2}$

e) Given that,

$ f\left( x \right)={{\left( x+1 \right)}^{3}}{{\left( x-3 \right)}^{3}} $ 

$ f'\left( x \right)=3x{{\left( x+1 \right)}^{2}}{{\left( x-3 \right)}^{3}}+3{{\left( x-3 \right)}^{2}}{{\left( x+1 \right)}^{3}} $ 

$ =3{{\left( x+1 \right)}^{2}}{{\left( x-3 \right)}^{2}}\left[ x-3+x+1 \right] $ 

$ =6{{\left( x+1 \right)}^{2}}{{\left( x-3 \right)}^{2}}\left( x-1 \right) $ 

Now, 

$ f'\left( x \right)=0 $ 

$ \Rightarrow x=-1,3,1 $  

The points $x=-1,1,3$ divided the real line into four disjoint intervals. i.e., $\left( -\infty ,-1 \right),\left( -1,1 \right),\left( 1,3 \right)and\left( 3,\infty  \right)$ 

In intervals $\left( -\infty ,-1 \right)and\left( -1,1 \right),f'\left( x \right)=6{{\left( x+1 \right)}^{2}}{{\left( x-3 \right)}^{2}}\left( x-1 \right)<0$ 

$\therefore f$ is strictly decreasing in interval $\left( -\infty ,-1 \right)and\left( -1,1 \right)$ 

In intervals $\left( 1,3 \right)and\left( 3,\infty  \right),f'\left( x \right)=6{{\left( x+1 \right)}^{2}}{{\left( x-3 \right)}^{2}}\left( x-1 \right)>0$ 

$\therefore f$ is strictly decreasing in the interval $\left( 1,3 \right)and\left( 3,\infty  \right)$.

7. Show that $y=\log \left( 1+x \right)-\frac{2x}{2+x},x>-1,$ is an increasing function of 

$x$ throughout its domain.

Ans: We are given that,

$ y=\log \left( 1+x \right)-\frac{2x}{2+x} $ 

$ \therefore \frac{dy}{dx}=\frac{1}{1+x}-\frac{\left( 2+x \right)\left( 2 \right)-2x\left( 1 \right)}{{{\left( 2+x \right)}^{2}}} $ 

 $ =\frac{{{x}^{2}}}{{{\left( 2+x \right)}^{2}}} $ 

Now,

$ \frac{dy}{dx}=0 $ 

 $ \Rightarrow \frac{{{x}^{2}}}{{{\left( 2+x \right)}^{2}}}=0 $ 

 $ \Rightarrow {{x}^{2}}=0 $ 

$ \Rightarrow x=0 $  

Since $x>-1$ point $x=0$ divides the domain $\left( -1,\infty  \right)$ in two disjoint 

intervals i.e., $-1<x<0$ and $x>0.$ 

 When $-1<x<0$we have:

  $ x<0\Rightarrow {{x}^{2}}>0 $ 

 $ x>-1\Rightarrow \left( 2+x \right)>0 $ 

 $ \Rightarrow {{\left( 2+x \right)}^{2}}>0 $ 

 \[\therefore y=\frac{{{x}^{2}}}{{{\left( 2+x \right)}^{2}}}>0\]

Also, when $x>0$ 

 $ x<0\Rightarrow {{x}^{2}}>0, $ 

 $ {{\left( 2+x \right)}^{2}}>0 $ 

 $ \therefore y=\frac{{{x}^{2}}}{{{\left( 2+x \right)}^{2}}}>0 $ 

 Hence, the function $f$ is increasing throughout this domain.

8. Find the values of $x$ for which $y={{\left[ x\left( x-2 \right) \right]}^{2}}$ is an increasing function.

Ans: We have,         

  $ y={{\left[ x\left( x-2 \right) \right]}^{2}} $ 

 $ ={{\left[ {{x}^{2}}-2x \right]}^{2}} $ 

 $ \therefore \frac{dy}{dx}=2\left( {{x}^{2}}-2x \right)\left( 2x-2 \right) $ 

 $ =4x\left( x-2 \right)\left( x-1 \right) $ 

 $ \therefore \frac{dy}{dx}=0 $ 

 $ \Rightarrow x=0,1,2 $ 

The points $x=0,1,2$ divide the real line into four disjoint intervals i.e., 

$\left( -\infty ,0 \right),\left( 0,1 \right),\left( 1,2 \right)and\left( 2,\infty  \right).$ 

In intervals $\left( -\infty ,0 \right)and\left( 1,2 \right),\frac{dy}{dx}<0$ 

$\therefore y$ is strictly decreasing in intervals $\left( -\infty ,0 \right)and\left( 1,2 \right)$ 

However, in intervals $\left( 0,1 \right)and\left( 2,\infty  \right)$, $\frac{dy}{dx}>0$ 

$\therefore y$ is strictly decreasing in intervals $\left( 0,1 \right)and\left( 2,\infty  \right)$

$\therefore y$ is strictly decreasing in intervals $0<x<1$  and $x>2$.

9. Prove that $y=\frac{4\sin \theta }{\left( 2+\cos \theta  \right)}-\theta $ is an increasing function of $\theta $ in $\left[ 0,\frac{\pi }{2} \right]$.

Ans: We have,

 $ y=\frac{4\sin \theta }{\left( 2+\cos \theta  \right)}-\theta  $ 

 $ \therefore \frac{dy}{d\theta }=\frac{\left( 2+\cos \theta  \right)\left( 4\cos \theta  \right)-4\sin \theta \left( -\sin \theta  \right)}{{{\left( 2+\cos \theta  \right)}^{2}}}-1 $ 

 $ =\frac{8\cos \theta +4{{\cos }^{2}}\theta +4{{\sin }^{2}}\theta }{{{\left( 2+\cos \theta  \right)}^{2}}}-1 $ 

 $ =\frac{8\cos \theta +4}{{{\left( 2+\cos \theta  \right)}^{2}}}-1 $ 

Now,           

$ \frac{dy}{d\theta }=0 $ 

$ \Rightarrow \frac{8\cos \theta +4}{{{\left( 2+\cos \theta  \right)}^{2}}}=1 $ 

$ \Rightarrow 8\cos \theta +4=4+{{\cos }^{2}}\theta +4\cos \theta  $ 

$ \Rightarrow {{\cos }^{2}}\theta -4\cos \theta =0 $ 

$ \Rightarrow \cos \theta =0,4 $ 

Since, 

$ \cos \theta \ne 4, $ 

$ \cos \theta =0 $ 

$ \Rightarrow \theta =\frac{\pi }{2} $ 

Now, $\frac{dy}{d\theta }=\frac{\cos \left( 4-\cos \theta  \right)}{{{\left( 2+\cos  \right)}^{2}}}$ 

In the interval $\left[ 0,\frac{\pi }{2} \right]$, we have $\cos \theta >0$,

Also, $4>\cos \theta \Rightarrow 4-\cos \theta >0$ 

$\therefore \cos \theta \left( 4-\cos \theta  \right)>0$ and also ${{\left( 2+\cos \theta  \right)}^{2}}>0$ 

$ \Rightarrow \frac{\cos \theta \left( 4-\cos \theta  \right)}{{{\left( 2+\cos \theta  \right)}^{2}}}>0 $ 

$ \Rightarrow \frac{dy}{dx}>0 $  

Therefore $y$ is strictly increasing in the interval $\left( 0,\frac{\pi }{2} \right)$ 

Hence, $y$ is increasing in the interval $\left( 0,\frac{\pi }{2} \right)$.

10. Prove that the logarithmic function is strictly increasing on $\left( 0,\infty  \right)$.

Ans: The given function is $f\left( x \right)\log x$.

\[f'\left( x \right)=\frac{1}{x}\] 

It is clear that for $x>0,f'\left( x \right)=\frac{1}{x}>0$ 

Hence, $f\left( x \right)\log x$ is strictly increasing in the interval $\left( 0,\infty  \right)$.

11. Prove that the function $f$ is given by $f\left( x \right)={{x}^{2}}-x+1$ is neither strictly increasing nor strictly decreasing on $\left( -1,1 \right)$.

Ans: The given function is $f\left( x \right)={{x}^{2}}-x+1$ 

$\therefore f'\left( x \right)=2x-1$ 

Now,

$ f'\left( x \right)=0 $ 

 $ \Rightarrow x=\frac{1}{2}. $ 

The point $\frac{1}{2}$ divides the interval $\left( -1,1 \right)$ into two disjoint intervals i.e.,    

$\left( -1,\frac{1}{2} \right)and\left( \frac{1}{2},1 \right).$ 

Now, in the interval $\left( -1,\frac{1}{2} \right),f'\left( x \right)=2x-1<0$ 

Therefore, $f$ is strictly decreasing in the interval $\left( -1,\frac{1}{2} \right)$,

However, in the interval $\left( \frac{1}{2},1 \right),f'\left( x \right)=2x-1>0$     

Therefore, $f$ is strictly decreasing in the interval $\left( \frac{1}{2},1 \right)$,

Hence, $f$ is neither strictly increasing nor decreasing in interval 

$\left( -1,1 \right)$.

12. Which of the following functions are strictly decreasing on $\left( 0,\frac{\pi }{2} \right)$?

(A) \[\mathbf{cosx}\] (B) $\cos 2x$  (C) $\cos 3x$  (D) $\tan x$ 

 Ans. 

A) Let ${{f}_{1}}\left( x \right)=\cos x$ 

$\therefore {{f}_{1}}^{\prime }\left( x \right)=-\sin x$ 

In interval, $\left( 0,\frac{\pi }{2} \right),{{f}_{1}}^{\prime }\left( x \right)=-\sin x<0$ 

$\therefore {{f}_{1}}\left( x \right)=\cos x$ is strictly decreasing in the interval $\left( 0,\frac{\pi }{2} \right)$.

B) Let ${{f}_{2}}\left( x \right)=\cos 2x$ 

$\therefore {{f}_{2}}^{\prime }\left( x \right)=-2\sin 2x$ 

Now,

$ 0<x<\frac{\pi }{2}\Rightarrow 0<2x<\pi  $ 

$ \Rightarrow \sin 2x>0\Rightarrow -2\sin 2x<0 $ 

$\therefore {{f}_{2}}^{\prime }\left( x \right)=-2\sin 2x<0$  on $\left( 0,\frac{\pi }{2} \right)$ 

$\therefore {{f}_{2}}\left( x \right)=\cos 2x$ is strictly decreasing in interval $\left( 0,\frac{\pi }{2} \right)$$$ 

C) Let ${{f}_{3}}\left( x \right)=\cos 3x$ 

$\therefore {{f}_{3}}^{\prime }\left( x \right)=-3\sin 3x$ 

Now,

  $ {{f}_{3}}^{\prime }\left( x \right)=0 $ 

 $ \Rightarrow \sin 3x=0 $ 

 $ \Rightarrow 3x=\pi ,x\in \left( 0,\frac{\pi }{2} \right) $ 

 $ \Rightarrow x=\frac{\pi }{3} $ 

The point $x=\frac{\pi }{3}$  divides the interval $\left( 0,\frac{\pi }{2} \right)$  into two disjoint intervals i.e., $\left( 0,\frac{\pi }{3} \right)$  and $\left( \frac{\pi }{3},\frac{\pi }{2} \right)$.

Now, in the interval $\left( 0,\frac{\pi }{3} \right)$, ${{f}_{3}}\left( x \right)=-3\sin 3x<0\left[ 0<x<\frac{\pi }{3}\Rightarrow 0<3x<\pi  \right]$ 

$\therefore {{f}_{3}}$ is strictly decreasing in interval x$\left( 0,\frac{\pi }{3} \right)$ 

However, in the interval $\left( \frac{\pi }{3},\frac{\pi }{2} \right)$, ${{f}_{3}}\left( x \right)=-3\sin 3x>0\left[ \frac{\pi }{3}<x<\frac{\pi }{2}\Rightarrow \pi <3x<\frac{3\pi }{2} \right]$ 

$\therefore {{f}_{3}}$ is strictly increasing in the interval $\left( \frac{\pi }{3},\frac{\pi }{2} \right)$ 

Hence, ${{f}_{3}}$ is neither increasing nor decreasing in interval $\left( 0,\frac{\pi }{2} \right)$

D) Let ${{f}_{4}}\left( x \right)=\tan x$ 

$\therefore {{f}_{4}}^{\prime }\left( x \right)={{\sec }^{2}}x$ 

In interval $\left( 0,\frac{\pi }{2} \right)$,${{f}_{4}}^{\prime }\left( x \right)={{\sec }^{2}}x>0$ 

\[∴f_4\] is strictly increasing in the interval $\left( 0,\frac{\pi }{2} \right)$.

Therefore, functions $\cos x$and $\cos 2x$  are strictly decreasing in $\left( 0,\frac{\pi }{2} \right)$.

Hence, the correct options are A and B.

13. On which of the following intervals is the function $f$ is given by 

$f\left( x \right)={{x}^{100}}+\sin x-1$ strictly decreasing?

A. $\left( 0,1 \right)$ 

B. $\left( \frac{\pi }{2},\pi  \right)$ 

C. $\left( 0,\frac{\pi }{2} \right)$ 

D. None of these

Ans: We have,

$ f\left( x \right)={{x}^{100}}+\sin x-1 $ 

$ \therefore {f}'\left( x \right)=100{{x}^{90}}+\cos x $ 

In interval $\left( 0,1 \right),\cos x>0$ and $100{{x}^{90}}>0$ 

$\therefore f'\left( x \right)>0$ 

Thus, the function $f$ is strictly increasing in the interval $\left( 0,1 \right)$.

In interval $\left( \frac{\pi }{2},\pi  \right),\cos x<0$  and \[\text{100}{{\text{x}}^{90}}>0\].

Also, $100{{x}^{90}}>\cos x$ 

$\therefore f'\left( x \right)>0in\left( \frac{\pi }{2},\pi  \right)$ 

Thus, the function $f$ is strictly increasing in the interval $\left( \frac{\pi }{2},\pi  \right)$.

In the interval $\left( 0,\frac{\pi }{2} \right)$, $\cos x<0$ and $100{{x}^{90}}>0$ 

$ \therefore 100{{x}^{90}}+\cos x>0 $ 

$ \Rightarrow f'\left( x \right)>0on\left( 0,\frac{\pi }{2} \right) $ 

$\therefore f$ is strictly increasing in the interval $\left( 0,\frac{\pi }{2} \right)$

Hence, the function $f$ is strictly decreasing in none of the intervals. The correct option is D.

14. Find the least value of $a$ such that the function $f$ given 

$f\left( x \right)={{x}^{2}}+ax+1$ is strictly increasing on $\left( 1,2 \right)$.

Ans: We have,

$ f\left( x \right)={{x}^{2}}+ax+1 $ 

$ \therefore {f}'\left( x \right)=2x+a $ 

Now, the function $f$ will be increasing in $\left( 1,2 \right)$ if ${f}'\left( x \right)>0$ in $\left( 1,2 \right)$.

  $ \Rightarrow 2x+a>0 $ 

 $ \Rightarrow 2x>-a $ 

 $ \Rightarrow x>\frac{-a}{2} $ 

 As a result, we must determine the smallest value of $a$ such that 

 $x>\frac{-a}{2},x\in \left( 1,2 \right)$ 

 $\Rightarrow x>\frac{-a}{2}\left( 1<x<2 \right)$ 

 Thus, the least value is given by

  $ \frac{-a}{2}=1 $ 

 $ \Rightarrow a=-2 $ 

Hence, the required value of $a$ is $-2$.

15. Let I be any interval disjoint from $\left( -1,1 \right)$, prove that the function $f$ given by $f\left( x \right)=x+\frac{1}{x}$ is strictly increasing on I.

Ans: We have,

$ f\left( x \right)=x+\frac{1}{x} $ 

 $ \therefore {f}'\left( x \right)=1-\frac{1}{{{x}^{2}}} $ 

Now, 

$ f\left( x \right)=0 $ 

$ \Rightarrow x=\pm 1 $ 

The real line is divided into three disjoint intervals i.e., 

$\left( -\infty ,-1 \right),\left( -1,1 \right),\left( 1,\infty  \right)$ by the points $x=1,-1$.

In the interval $\left( -1,1 \right)$ we observe,

$ -1<x<1 $ 

$ \Rightarrow {{x}^{2}}<1 $ 

$ \Rightarrow 1<\frac{1}{{{x}^{2}}},x\ne 0 $ 

$ \therefore f'\left( x \right)=1-\frac{1}{{{x}^{2}}}<0on\left( -1,1 \right)\sim \left\{ 0 \right\}. $ 

$\therefore f$ is strictly decreasing on $\left( -1,1 \right)\sim \left\{ 0 \right\}$.

In the interval, $\left( -\infty ,-1 \right)and\left( 1,\infty  \right),$ it is observed that:

$ x<-1 $ 

$ \Rightarrow {{x}^{2}}>1 $ 

$ \Rightarrow 1>\frac{1}{{{x}^{2}}} $ 

$ \Rightarrow 1-\frac{1}{{{x}^{2}}}>0 $ 

$\therefore f'\left( x \right)=1-\frac{1}{{{x}^{2}}}>0$  on $\left( -\infty ,-1 \right)and\left( 1,\infty  \right).$

$\therefore f$ is strictly increasing on $\left( -\infty ,-1 \right)and\left( 1,\infty  \right).$

Hence, the function $f$is strictly increasing in the interval I disjoint  

from $\left( -1,1 \right)$.

Hence, the given result is proved.

16. Prove that the function $f$ given by $f\left( x \right)=\log \sin x$ is strictly increasing on $\left( 0,\frac{\pi }{2} \right)$ and strictly decreasing on $\left( \frac{\pi }{2},\pi  \right)$.

Ans: We have,

$ f\left( x \right)=\log \sin x $ 

 $ \therefore f'\left( x \right)=\frac{1}{\sin x}\cos x=\cot x $ 

In interval, $\left( 0,\frac{\pi }{2} \right),f'\left( x \right)=\cot x>0$ 

$\therefore f$ is strictly increasing in $\left( 0,\frac{\pi }{2} \right)$ 

In interval, $\left( \frac{\pi }{2},\pi  \right),f'\left( x \right)=\cot x<0$ 

$\therefore f$ is strictly increasing in $\left( \frac{\pi }{2},\pi  \right)$.

17. Prove that the function $f$ is given by $f\left( x \right)=\log \cos x$ is strictly decreasing on $\left( 0,\frac{\pi }{2} \right)$ and strictly increasing on $\left( \frac{\pi }{2},\pi  \right)$.

Ans: We have,

$ f\left( x \right)=\log \cos x $ 

$ \therefore f'\left( x \right)=\frac{1}{\cos x}\left( -\sin x \right)=-\tan x $ 

In interval $\left( 0,\frac{\pi }{2} \right)$,

$ \tan x>0\Rightarrow -\tan x<0 $ 

$ \therefore f'\left( x \right)<0on\left( 0,\frac{\pi }{2} \right) $ 

$\therefore f$ is strictly decreasing on $\left( 0,\frac{\pi }{2} \right)$ 

In interval $\left( \frac{\pi }{2},\pi  \right)$,

$ \tan x<0\Rightarrow -\tan x>0 $ 

$ \therefore f'\left( x \right)>0on\left( \frac{\pi }{2},\pi  \right) $ 

$\therefore f$ is strictly decreasing on $\left( \frac{\pi }{2},\pi  \right)$. 

18. Prove that the function given by $f\left( x \right)={{x}^{3}}-3{{x}^{2}}+3x=100$ is increasing in R.

Ans: We have,

$ f\left( x \right)={{x}^{3}}-3{{x}^{2}}+3x=100 $ 

$ f'\left( x \right)=3{{x}^{2}}-6x+3 $ 

$ =3\left( {{x}^{2}}-2x+1 \right) $ 

$ =3{{\left( x-1 \right)}^{2}} $ 

For any $x\in R$ 

${{\left( x-1 \right)}^{2}}>0$ 

Thus, $f'\left( x \right)$ is always positive in R.

Hence, the given function $f$ is increasing in R.

19. The interval in which $y={{x}^{2}}{{e}^{-x}}$ is increasing is

A) $\left( -\infty ,\infty  \right)$ 

B) $\left( -2,0 \right)$ 

C) $\left( 2,\infty  \right)$ 

D) $\left( 0,2 \right)$ 

Ans: We have,        

$ y={{x}^{2}}{{e}^{-x}} $ 

 $ \therefore \frac{dy}{dx}=2x{{e}^{-x}}-{{x}^{2}}{{e}^{-x}}=x{{e}^{-x}}\left( 2-x \right) $ 

Now,

$ \frac{dy}{dx}=0 $ 

 $ \Rightarrow x=0,2 $ 

 The points $x=0,2$ divided the real line into the three disjoint intervals 

 i.e., $\left( -\infty ,0 \right),\left( 0,2 \right),\left( 2,\infty  \right).$ 

 In intervals $\left( -\infty ,0 \right)and\left( 2,\infty  \right),f'\left( x \right)<0$ as ${{e}^{-x}}$ is always positive.

 $\therefore f$ is decreasing on $\left( -\infty ,0 \right)and\left( 2,\infty  \right)$.

 In interval $\left( 0,2 \right),f'\left( x \right)>0$ 

 $\therefore f$is strictly increasing on $\left( 0,2 \right)$.

Hence $f$ is strictly increasing in the interval $\left( 0,2 \right)$

Thus, D is the correct option.

Conclusion

In conclusion, Class 12 Maths Exercise 6.2 serves as a valuable practice ground for wielding derivatives to analyze the monotonic behavior of functions. By working through these problems, Students will solidify their understanding of how a function's rate of change (represented by the derivative) dictates its increasing or decreasing nature across different intervals. Ex 6.2 Class 12 Maths NCERT Solutions equips students to move beyond simply calculating derivatives and leverage them to gain deeper insights into the characteristics of functions - a crucial skill for higher mathematics and various scientific applications.


Class 12 Maths Chapter 6: Exercises Breakdown

S.No.

Chapter 6 - Application of Derivatives Exercises in PDF Format

1

Class 12 Maths Chapter 6 Exercise 6.1 - 18 Questions & Solutions (6 Short Answers, 10 Long Answers, 2 MCQs)

2

Class 12 Maths Chapter 6 Exercise 6.3 - 27 Questions & Solutions (25 Short Answers, 2 MCQs)

3

Class 12 Maths Chapter 6 Miscellaneous Exercise - 16 Questions & Solutions



CBSE Class 12 Maths Chapter 6 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

WhatsApp Banner
Best Seller - Grade 12 - JEE
View More>
Previous
Next

FAQs on NCERT Solutions For Class 12 Maths Chapter 6 Application Of Derivatives Exercise 6.2 - 2025-26

1. What type of problems are solved in NCERT Solutions for Class 12 Maths Chapter 6 Application of Derivatives Exercise 6.2 as per the CBSE 2025–26 syllabus?

NCERT Solutions for Class 12 Maths Chapter 6, Exercise 6.2, cover questions focused on determining the increasing and decreasing nature of functions using derivatives. Problems involve analyzing intervals where functions are strictly increasing or decreasing by finding where the derivative is positive or negative, aligned with the latest CBSE guidelines.

2. How do NCERT Solutions for Class 12 Maths Chapter 6 Exercise 6.2 help develop problem-solving strategies for calculus?

These solutions guide you through a step-by-step approach: calculate the derivative, set it to zero to find critical points, and test the sign of the derivative in different intervals. This method strengthens analytical skills in calculus and supports systematic problem solving, mirroring the CBSE examination pattern.

3. Which key concepts from the Application of Derivatives are emphasized in Exercise 6.2 solutions?

Key focus areas in Exercise 6.2 include:

  • Monotonic behavior of functions (increasing/decreasing)
  • Critical points and their role in interval analysis
  • How to interpret the sign of the derivative
  • Real-world application of calculus through function analysis

4. Why is it essential to practice the stepwise methods shown in NCERT Solutions for Class 12 Maths Chapter 6 Exercise 6.2?

Following a stepwise solution process ensures clarity in identifying intervals of monotonicity and prevents calculation errors. It helps avoid common mistakes like misinterpreting critical points or intervals, thereby boosting exam confidence and accuracy on CBSE board questions.

5. What role do derivatives play in determining whether a function is increasing or decreasing?

The sign of the derivative (positive or negative) at a point or over an interval directly indicates the increasing or decreasing nature of a function. If the derivative is positive in an interval, the function is increasing; if negative, it is decreasing within that interval.

6. How does Exercise 6.2 support preparation for higher mathematical studies and competitive exams?

This exercise builds a strong foundational understanding of function behavior and rate of change, which are crucial in advanced calculus, engineering, and entrance exams like JEE. Mastery of these stepwise solutions makes tackling complex problems easier in higher studies.

7. What are some common misconceptions students have about analyzing increasing and decreasing functions using derivatives?

Students often:

  • Assume a function is always increasing if its derivative is positive at some point, ignoring interval analysis
  • Forget to test all intervals created by critical points
  • Miss checking endpoints for closed intervals
Addressing these helps avoid errors on CBSE exams.

8. In NCERT Class 12 Maths Chapter 6 Exercise 6.2, how are intervals of monotonicity identified for a given function?

Intervals are identified by:

  • Finding the derivative and all values where it is zero or undefined (critical points)
  • Dividing the number line at these points
  • Testing the sign of the derivative within each interval to classify them as increasing or decreasing

9. How does understanding increasing and decreasing functions help in optimization problems?

Knowing where a function increases or decreases allows you to pinpoint local maxima and minima, key for solving real-life optimization problems in economics, physics, and engineering, as emphasized in the CBSE syllabus for Class 12.

10. What is the importance of following the latest CBSE 2025–26 marking scheme while practicing NCERT Solutions for Application of Derivatives?

Practicing according to the CBSE 2025–26 marking scheme ensures you:

  • Structure answers stepwise, as required in board exams
  • Allocate time and steps for full marks
  • Present solutions as expected by CBSE evaluators
This approach maximizes score potential in the final exam.