Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

CBSE Class 12 Mathematics Chapter 5 Continuity and Differentiability – NCERT Solutions 2025-26

ffImage
banner

Download Free PDF of Continuity and Differentiability Exercise 5.7 for Class 12 Maths

If you’re preparing for Class 12 CBSE board exams, mastering NCERT Solutions for Class 12 Maths Chapter 5 Exercise 5.7 can make a noticeable difference to your result. This crucial exercise in Continuity and Differentiability helps you strengthen concepts like the chain rule, implicit differentiation, and derivatives of composite and trigonometric functions—topics consistently valued by the board and worth up to 9 marks in calculus.

toc-symbolTable of Content
toggle-arrow

When students search for “ex 5.7 class 12” or need stepwise solutions built for last-minute revision, clear explanations and exam-pattern questions become essential. Vedantu’s solutions focus on logical progression and answer-checking, supporting your revision with error-spotting tips, formula boxes, and real board-type application for Exercise 5.7.


With reliable answers developed by experienced CBSE educators, you get the clarity and accuracy needed for high-stakes exams. For structured syllabus reference, use the Class 12 Maths syllabus as your official guide.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access Class 12 Maths NCERT Chapter 5 Continuity and Differentiability Exercise 5.7

Find the second order derivatives of the functions given in Exercises 1 to 10. 

1. $\text{y=}{{\text{x}}^{\text{2}}}\text{+3x+2}$.

Ans:  

The given function is $\text{y=}{{\text{x}}^{\text{2}}}\text{+3x+2}$.

Then, differentiating both sides with respect to $\text{x}$ gives

$\frac{\text{dy}}{\text{dx}}\text{=}\frac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{2}}}\text{)+}\frac{\text{d}}{\text{dx}}\text{(3x)+}\frac{\text{d}}{\text{dx}}\text{(2)=2x+3+0=2x+3}$

That is,

$\frac{\text{dy}}{\text{dx}}=2\text{x+3}$.

Again, differentiating both sides with respect to $\text{x}$ gives

$\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}\frac{\text{d}}{\text{dx}}\text{(2x+3)=}\frac{\text{d}}{\text{dx}}\text{(2x)+}\frac{\text{d}}{\text{dx}}\text{(3)=2+0=2}$

Hence, $\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=2}$.


2. $\mathbf{y=}{{\mathbf{x}}^{\mathbf{20}}}$.

Ans: 

The given function is $\text{y=}{{\text{x}}^{\text{20}}}$.

Then, differentiating both sides with respect to $\text{x}$ gives

\[\frac{\text{dy}}{\text{dx}}\text{=}\frac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{20}}}\text{)=20}{{\text{x}}^{\text{19}}}\]

Again, differentiating both sides with respect to $\text{x}$ gives

\[\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}\frac{\text{d}}{\text{dx}}\text{(20}{{\text{x}}^{\text{19}}}\text{)=20}\frac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{19}}}\text{)=20}\left( 19 \right){{\text{x}}^{\text{18}}}\text{=380}{{\text{x}}^{\text{18}}}\].

Hence, \[\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=380}{{\text{x}}^{\text{18}}}\].


3. $\mathbf{y=x}\cdot \mathbf{cosx}$.

Ans: 

The given function is $\text{y=x}\text{.cosx}$.

Then, differentiating both sides with respect to $\text{x}$ gives

$\frac{\text{dy}}{\text{dx}}\text{=}\frac{\text{d}}{\text{dx}}\text{(x}\text{.cosx)=cosx}\text{.}\frac{\text{d}}{\text{dx}}\text{(x)+x}\frac{\text{d}}{\text{dx}}\text{(cosx)=cosx}\text{.1+x(-sinx)=cosx-xsinx}$

That is, $\frac{\text{dy}}{\text{dx}}\text{=cosx-xsinx}$.

Again, differentiating both sides with respect to $\text{x}$ gives

$\begin{align} & \frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}\frac{\text{d}}{\text{dx}}\text{(cosx-xsinx)=}\frac{\text{d}}{\text{dx}}\text{(cosx)-}\frac{\text{d}}{\text{dx}}\text{(xsinx)} \\ & \text{=-sinx- }\!\![\!\!\text{ sinx}\cdot \frac{\text{d}}{\text{dx}}\text{(x)+x}\cdot \frac{\text{d}}{\text{dx}}\text{(sinx) }\!\!]\!\!\text{ } \\ & \text{=-sinx-(sinx+xcosx)} \\ \end{align}$

Hence, $\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=-(xcosx+2sinx)}$.


4. $\mathbf{y=logx}$.

Ans: 

The given function is $\text{y=logx}$.

Then, differentiating both sides with respect to $\text{x}$ gives

\[\frac{\text{dy}}{\text{dx}}\text{=}\frac{\text{d}}{\text{dx}}\text{(logx)=}\frac{\text{1}}{\text{x}}\]

Again, differentiating both sides with respect to $\text{x}$ gives

\[\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}\frac{\text{d}}{\text{dx}}\left( \frac{\text{1}}{\text{x}} \right)\text{=}\frac{\text{-1}}{{{\text{x}}^{\text{2}}}}\]

Hence, \[\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=-}\frac{\text{1}}{{{\text{x}}^{\text{2}}}}\].


5. $\text{y=}{{\text{x}}^{\text{3}}}\text{logx}$.

Ans: 

The given function is $\text{y=}{{\text{x}}^{\text{3}}}\text{logx}$.

Then, differentiating both sides with respect to $\text{x}$ gives

$\frac{\text{dy}}{\text{dx}}\text{=}\frac{\text{d}}{\text{dx}}\left[ {{\text{x}}^{\text{3}}}\text{logx} \right]\text{=logx}\text{.}\frac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{3}}}\text{)+}{{\text{x}}^{\text{3}}}\frac{\text{d}}{\text{dx}}\text{(logx)=logx}\text{.3}{{\text{x}}^{\text{2}}}\text{+}{{\text{x}}^{\text{3}}}\text{.}\frac{\text{1}}{\text{x}}\text{=logx}\text{.3}{{\text{x}}^{\text{2}}}\text{+}{{\text{x}}^{\text{2}}}$

That is, $\frac{\text{dy}}{\text{dx}}\text{=}{{\text{x}}^{\text{2}}}\text{(1+3logx)}$. 

Again, differentiating both sides with respect to $\text{x}$ gives

$\begin{align} & \frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}\frac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{2}}}\text{(1+3logx))} \\ & \text{=(1+3logx)}\text{.}\frac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{2}}}\text{)+}{{\text{x}}^{\text{2}}}\frac{\text{d}}{\text{dx}}\text{(1+3logx)} \\ & \text{=(1+3logx)}\text{.2x+}{{\text{x}}^{\text{3}}}\text{.}\frac{\text{3}}{\text{x}} \\ & \text{=2x+6logx+3x} \\ & \text{=5x+6xlogx} \end{align}$

Hence, $\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=x(5+6logx)}$.


6. $\mathbf{y=}{{\mathbf{e}}^{\mathbf{x}}}\mathbf{sin5x}$

Ans: 

The given function is $\text{y=}{{\text{e}}^{\text{x}}}\text{sin5x}$.

Then, differentiating both sides with respect to $\text{x}$ gives

\[\begin{align} & \frac{\text{dy}}{\text{dx}}\text{=}\frac{\text{d}}{\text{dx}}\left[ {{\text{e}}^{\text{x}}}\text{sin5x} \right]\text{=sinx}\frac{\text{d}}{\text{dx}}\text{(}{{\text{e}}^{\text{x}}}\text{)+}{{\text{e}}^{\text{x}}}\frac{\text{d}}{\text{dx}}\text{(sin5x)} \\ & \Rightarrow \frac{\text{dy}}{\text{dx}}\text{=sin5x}\text{.}{{\text{e}}^{\text{x}}}\text{+}{{\text{e}}^{\text{x}}}\text{.cos5x}\text{.}\frac{\text{d}}{\text{dx}}\text{(5x)} \\ \end{align}\]

That is, $\frac{\text{dy}}{\text{dx}}\text{=}{{\text{e}}^{\text{x}}}\text{(sin5x+5cos5x)}$.

Again, differentiating both sides with respect to $\text{x}$ gives

\[\begin{align} & \frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}\frac{\text{d}}{\text{dx}}\left[ {{\text{e}}^{\text{x}}}\text{(sin5x+5cos5x)} \right] \\ & \text{=(sin5x+5cos5x)}\text{.}\frac{\text{d}}{\text{dx}}\text{(}{{\text{e}}^{\text{x}}}\text{)+}{{\text{e}}^{\text{x}}}\text{.}\frac{\text{d}}{\text{dx}}\text{(sin5x+5cos5x)} \\ & \text{=(sin5x+5cos5x)(}{{\text{e}}^{\text{x}}}\text{)+}{{\text{e}}^{\text{x}}}\left[ \text{cos5x}\text{.}\frac{\text{d}}{\text{dx}}\text{(5x)+5(-sin5x)}\text{.}\frac{\text{d}}{\text{dx}}\text{(5x)} \right] \\ & \text{=}{{\text{e}}^{\text{x}}}\text{(sin5x+5cos5x)+}{{\text{e}}^{\text{x}}}\text{(5cos5x-25sin5x)} \\ \end{align}\]

 $\text{=}{{\text{e}}^{\text{x}}}\text{(10cos5x-24sin5x)}$.

Hence, $\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=2}{{\text{e}}^{\text{x}}}\text{(5cox5x-12sin5x)}$.


7. $\text{y=}{{\text{e}}^{\text{6x}}}\text{cos3x}$.

Ans:  

The given function is $\text{y=}{{\text{e}}^{\text{6x}}}\text{cos3x}$.

Then, differentiating both sides with respect to $\text{x}$ gives

$\begin{align} & \frac{\text{dy}}{\text{dx}}\text{=}\frac{\text{d}}{\text{dx}}\text{(}{{\text{e}}^{\text{6x}}}\text{cos3x)=cos3x }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(}{{\text{e}}^{\text{6x}}}\text{)+}{{\text{e}}^{\text{6x}}}\text{ }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(cos3x)} \\ & \Rightarrow \frac{\text{dy}}{\text{dx}}=\text{cos3x }\!\!\times\!\!\text{ }{{\text{e}}^{\text{6x}}}\text{ }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(6x)+}{{\text{e}}^{\text{6x}}}\text{ }\!\!\times\!\!\text{ (-sin3x) }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(3x)} \\ \end{align}$

Therefore,

$\frac{\text{dy}}{\text{dx}}\text{=6}{{\text{e}}^{\text{6x}}}\text{cos3x-3}{{\text{e}}^{\text{6x}}}\text{sin3x}$ …… (1)

Again, differentiating both sides with respect to $\text{x}$ gives

$\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}\frac{\text{d}}{\text{dx}}\text{(6}{{\text{e}}^{\text{6x}}}\text{cos3x-3}{{\text{e}}^{\text{6x}}}\text{sin3x)=6 }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(}{{\text{e}}^{\text{6x}}}\text{cos3x)-3 }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(}{{\text{e}}^{\text{6x}}}\text{sin3x)}$

$\text{=6 }\!\!\times\!\!\text{ }\left[ \text{6}{{\text{e}}^{\text{6x}}}\text{cos3x-3}{{\text{e}}^{\text{6x}}}\text{sin3x} \right]\text{-3 }\!\!\times\!\!\text{ }\left[ \text{sin3x }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(}{{\text{e}}^{\text{6x}}}\text{)+}{{\text{e}}^{\text{6x}}}\text{ }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(sin3x)} \right]$ [using (1)]

\[\begin{align} & \text{=36}{{\text{e}}^{\text{6x}}}\text{cos3x-18}{{\text{e}}^{\text{6x}}}\text{sin3x-3}\left[ \text{sin3x }\!\!\times\!\!\text{ }{{\text{e}}^{\text{6x}}}\text{ }\!\!\times\!\!\text{ 6+}{{\text{e}}^{\text{6x}}}\text{ }\!\!\times\!\!\text{ cos3x-3} \right] \\ & \text{=36}{{\text{e}}^{\text{6x}}}\text{cos3x-18}{{\text{e}}^{\text{6x}}}\text{sin3x-18}{{\text{e}}^{\text{6x}}}\text{sin3x-9}{{\text{e}}^{\text{6x}}}\text{cos3x} \\ \end{align}\]

Hence, \[\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=9}{{\text{e}}^{\text{6x}}}\text{(3cos3x-4sin3x)}\].


8. $\mathbf{y=ta}{{\mathbf{n}}^{\mathbf{-1}}}\mathbf{x}$.

Ans: 

The given function is $\text{y=ta}{{\text{n}}^{\text{-1}}}\text{x}$.

Then, differentiating both sides with respect to $\text{x}$ gives

$\frac{\text{dy}}{\text{dx}}\text{=}\frac{\text{d}}{\text{dx}}\text{ta}{{\text{n}}^{\text{-1}}}\text{x=}\frac{\text{1}}{\text{1-}{{\text{x}}^{\text{2}}}}$

Again, differentiating both sides with respect to $\text{x}$ gives

$\begin{align} & \frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}\frac{\text{d}}{\text{dx}}\left( \frac{\text{1}}{\text{1+}{{\text{x}}^{\text{2}}}} \right)\text{=}\frac{\text{d}}{\text{dx}}{{\text{(1+}{{\text{x}}^{\text{2}}}\text{)}}^{\text{-1}}}\text{=(-1) }\!\!\times\!\!\text{ (1+}{{\text{x}}^{\text{2}}}{{\text{)}}^{\mathbf{-2}}}\text{ }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(1+}{{\text{x}}^{\text{2}}}\text{)} \\ & \text{=-}\frac{\text{1}}{{{\text{(1+}{{\text{x}}^{\text{2}}}\text{)}}^{2}}}\text{ }\!\!\times\!\!\text{ 2x} \\ \end{align}$

Hence, $\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}\frac{\text{-2x}}{{{\text{(1+}{{\text{x}}^{\text{2}}}\text{)}}^{2}}}$.


9. $\text{y=log(logx)}$.

Ans: 

The given function is $\text{y=log(logx)}$.

Now, differentiating both sides with respect to $\text{x}$ gives

$\begin{align} & \frac{\text{dy}}{\text{dx}}\text{=}\frac{\text{d}}{\text{dx}}\text{ }\!\![\!\!\text{ log(logx) }\!\!]\!\!\text{ } \\ & =\frac{\text{1}}{\text{logx}}\text{ }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(logx)} \\ & \Rightarrow \frac{\text{dy}}{\text{dx}}\text{=(xlogx}{{\text{)}}^{\text{-1}}} \\ \end{align}$

Again, differentiating both sides with respect to $\text{x}$ gives

$\begin{align} & \frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}\frac{\text{d}}{\text{dx}}\left[ {{\text{(xlogx)}}^{\text{-1}}} \right]\text{=(-1) }\!\!\times\!\!\text{ (xlogx}{{\text{)}}^{\text{-2}}}\frac{\text{d}}{\text{dx}}\text{(xlogx)} \\ & =\frac{\text{-1}}{{{\text{(xlogx)}}^{\text{2}}}}\text{ }\!\!\times\!\!\text{ }\left[ \text{logx }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(x)+x }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(logx)} \right] \\ & =\frac{\text{-1}}{{{\text{(xlogx)}}^{\text{2}}}}\text{ }\!\!\times\!\!\text{ }\left[ \text{logx }\!\!\times\!\!\text{ 1+x }\!\!\times\!\!\text{ }\frac{\text{1}}{\text{x}} \right] \\ \end{align}$

Hence, $\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}\frac{\text{-(1+logx)}}{{{\text{(xlogx)}}^{\text{2}}}}$.


10. $\text{y=sin(logx)}$.

Ans: 

 The given function is $\text{y=sin(logx)}$.

Now, differentiating both sides with respect to $\text{x}$ gives

\[\frac{\text{dy}}{\text{dx}}\text{=}\frac{\text{d}}{\text{dx}}\text{ }\!\![\!\!\text{ sin(logx) }\!\!]\!\!\text{ =cos(logx) }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(logx)}=\frac{\text{cos(logx)}}{\text{x}}\]

Again, differentiating both sides with respect to $\text{x}$ gives

\[\begin{align} & \frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}\frac{\text{d}}{\text{dx}}\left[ \frac{\text{cos(logx)}}{\text{x}} \right] \\ & =\frac{\text{x}\left[ \text{cos(logx)} \right]\text{-cos(logx) }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(x)}}{{{\text{x}}^{\text{2}}}} \\ & =\frac{\text{x}\left[ \text{-sin(logx) }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(logx)} \right]\text{-cos(logx) }\!\!\times\!\!\text{ 1}}{{{\text{x}}^{\text{2}}}} \\ & =\frac{\text{-xsin(logx) }\!\!\times\!\!\text{ }\frac{\text{1}}{\text{x}}\text{-cos(logx)}}{{{\text{x}}^{\text{2}}}} \\ \end{align}\]

Hence, \[\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}\frac{\left[ \text{-sin(logx)-cos(logx)} \right]}{{{\text{x}}^{\text{2}}}}\].


11. If $\text{y=5cosx-3sinx}$, prove that $\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{+y=0}$. 

Ans: 

The given equation is $\text{y=5cosx-3sinx}$.

Then, differentiating both sides with respect to $\text{x}$ gives

$\frac{\text{dy}}{\text{dx}}\text{=}\frac{\text{d}}{\text{dx}}\text{(5cosx)-}\frac{\text{d}}{\text{dx}}\text{(3sinx)=5}\frac{\text{d}}{\text{dx}}\text{(cosx)-3}\frac{\text{d}}{\text{dx}}\text{(sinx)=5(-sinx)-3cosx}$

Therefore, $\frac{\text{dy}}{\text{dx}}\text{=-(5sinx+3cosx)}$.

Again, differentiating both sides with respect to $\text{x}$ gives

$\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}\frac{\text{d}}{\text{dx}}\text{ }\!\![\!\!\text{ -(5sinx+3cosx) }\!\!]\!\!\text{ }$

$\begin{align} & \text{=-}\left[ \text{5 }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(sinx)+3 }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(cosx)} \right] \\ & \text{= }\!\![\!\!\text{ 5cosx+3(-sinx) }\!\!]\!\!\text{ } \\ & \text{=-y} \\ \end{align}$

That is, $\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=-y}$.

Hence, $\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{+y=0}$.


12. If $\mathbf{y=co}{{\mathbf{s}}^{\mathbf{-1}}}\mathbf{x}$, Find $\frac{{{\mathbf{d}}^{\mathbf{2}}}\mathbf{y}}{\mathbf{d}{{\mathbf{x}}^{\mathbf{2}}}}$ in the terms of $\mathbf{y}$ alone.

Ans: 

The given function is $\text{y=co}{{\text{s}}^{\text{-1}}}\text{x}$.

Now, differentiating both sides with respect to $\text{x}$ gives

$\frac{\text{dy}}{\text{dx}}\text{=}\frac{\text{d}}{\text{dx}}\text{(co}{{\text{s}}^{\text{-1}}}\text{x)=}\frac{\text{-1}}{\sqrt{\text{1-}{{\text{x}}^{\text{2}}}}}\text{=-(1-}{{\text{x}}^{\text{2}}}{{\text{)}}^{\frac{\text{-1}}{\text{2}}}}$

Again, differentiating both sides with respect to $\text{x}$ gives

$\begin{align} & \frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}\frac{\text{d}}{\text{dx}}\left[ \text{-(1-}{{\text{x}}^{\text{2}}}{{\text{)}}^{\frac{\text{-1}}{\text{2}}}} \right] \\ & =\left( \frac{\text{-1}}{\text{2}} \right)\text{ }\!\!\times\!\!\text{ (1-}{{\text{x}}^{\text{2}}}{{\text{)}}^{\frac{\text{-3}}{\text{2}}}}\text{ }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(1-}{{\text{x}}^{\text{2}}}\text{)} \\ & =\frac{\text{1}}{\sqrt[\text{2}]{{{\text{(1-}{{\text{x}}^{\text{2}}}\text{)}}^{\text{3}}}}}\text{ }\!\!\times\!\!\text{ (-2x)} \\ \end{align}$

$\Rightarrow \frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}\frac{\text{-x}}{\sqrt{{{\text{(1-}{{\text{x}}^{\text{2}}}\text{)}}^{\text{3}}}}}$                                                                       …… (1)

                                                                                                                       

Now, $\text{y=co}{{\text{s}}^{\text{-1}}}\text{x}\Rightarrow \text{x=cosy}$.

Therefore, substituting $\text{x=cosy}$ into equation (1), gives

$\begin{align} & \frac{{{\text{d}}^{\text{2}}}\text{x}}{\text{d}{{\text{y}}^{\text{2}}}}\text{=}\frac{\text{-cosy}}{\sqrt{{{\text{(1-co}{{\text{s}}^{\text{2}}}\text{y)}}^{\text{3}}}}} \\ & =\frac{\text{-cosy}}{\text{si}{{\text{n}}^{\text{3}}}\text{y}} \\ & =\frac{\text{-cosy}}{\text{siny}}\text{ }\!\!\times\!\!\text{ }\frac{\text{1}}{\text{si}{{\text{n}}^{\text{2}}}\text{y}} \\ \end{align}$

Hence, $\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{= -coty }\!\!\times\!\!\text{ cose}{{\text{c}}^{\text{2}}}\text{y}$.


13. If $\mathbf{y=3cos(logx)+4sin(logx)}$, show that ${{\mathbf{x}}^{\mathbf{2}}}{{\mathbf{y}}_{\mathbf{2}}}\mathbf{+x}{{\mathbf{y}}_{\mathbf{1}}}\mathbf{+y=0}$.

Ans: 

The given equations are $\text{y=3cos(logx)+4sin(logx)}$                               …… (1)

and ${{\text{x}}^{\text{2}}}{{\text{y}}_{\text{2}}}\text{+x}{{\text{y}}_{\text{1}}}\text{+y=0}$                                                                                …… (2)

Then, differentiating both sides of the equation (1) with respect to $\text{x}$ gives

\[\begin{align} & {{\text{y}}_{\text{1}}}\text{=3 }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{ }\!\![\!\!\text{ cos(logx) }\!\!]\!\!\text{ +4 }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{ }\!\![\!\!\text{ sin(logx) }\!\!]\!\!\text{ } \\ & \text{=3 }\!\!\times\!\!\text{ }\left[ \text{-sin(logx) }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(logx)} \right]\text{+4 }\!\!\times\!\!\text{ }\left[ \text{cos(logx) }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(logx)} \right] \\ \end{align}\]

\[{{\text{y}}_{\text{1}}}\text{=}\frac{\text{-3sin(logx)}}{\text{x}}\text{+}\frac{\text{4cos(logx)}}{\text{x}}\text{=}\frac{\text{4cos(logx)-3sin(logx)}}{\text{x}}\]

Again, differentiating both sides with respect to $\text{x}$ gives

\[{{\text{y}}_{\text{2}}}\text{=}\frac{\text{d}}{\text{dx}}\left( \frac{\text{4cos(logx)-3sin(logx)}}{\text{x}} \right)\]

\[\begin{align} & \text{=}\frac{\text{x}\cdot \frac{d}{dx}\left[ \text{4 }\!\!\{\!\!\text{ cos(logx) }\!\!\}\!\!\text{ - }\!\!\{\!\!\text{ 3sin(logx) }\!\!\}\!\!\text{ } \right]\text{- }\!\!\{\!\!\text{ 4cos(logx)-3sin(logx) }\!\!\}\!\!\text{ }\times \text{1}}{{{\text{x}}^{\text{2}}}} \\ & \text{=}\frac{\text{x}\left[ \text{-4sin(logx)}\frac{d}{dx}\text{(logx)-3cos(logx)}\frac{d}{dx}\text{(logx)} \right]\text{-4cos(logx)+3sin(logx)}}{{{\text{x}}^{\text{2}}}} \\ \end{align}\]

$=\dfrac{\text{x}\left[ \text{-4sin(logx)}\cdot \dfrac{\text{1}}{\text{x}}\text{-3cos(logx)}\cdot \dfrac{\text{1}}{\text{x}} \right]\text{-4cos(logx)+3sin(logx)}}{{{\text{x}}^{\text{2}}}}$

$=\dfrac{\text{-4sin(logx)-3cos(logx)-4cos(logx)+3sin(logx)}}{{{\text{x}}^{\text{2}}}}$

Therefore, ${{\text{y}}_{\text{2}}}\text{=}\dfrac{\text{-sin(logx)-7cos(logx)}}{{{\text{x}}^{\text{2}}}}$.

Now, substituting the derivatives ${{\text{y}}_{1}}$ ,${{\text{y}}_{2}}$ and $\text{y}$ into the LHS of the equation (2) gives

$\begin{align} & {{\text{x}}^{\text{2}}}{{\text{y}}_{\text{2}}}\text{+x}{{\text{y}}_{\text{1}}}\text{+y} \\ & \text{=}{{\text{x}}^{\text{2}}}\left( \frac{\text{-sin(logx)-7cos(logx)}}{{{\text{x}}^{\text{2}}}} \right)\text{+x}\left( \frac{\text{4cos(logx)-3sin(logx)}}{{{\text{x}}^{\text{2}}}} \right)\text{+3cos(logx)+4sin(logx)} \\ & \text{=-sin(logx)-7cos(logx)+4cos(logx)-3sin(logx)+4sin(logx)} \\ & \text{=0} \\ \end{align}$

Hence, it has been proved that ${{\text{x}}^{\text{2}}}{{\text{y}}_{\text{2}}}\text{+x}{{\text{y}}_{\text{1}}}\text{+y}=0$.


14. If $\mathbf{y=A}{{\mathbf{e}}^{\mathbf{mx}}}\mathbf{+B}{{\mathbf{e}}^{\mathbf{nx}}}$, show that $\frac{{{\mathbf{d}}^{\mathbf{2}}}\mathbf{y}}{\mathbf{d}{{\mathbf{x}}^{\mathbf{2}}}}\mathbf{-(m+n)}\frac{\mathbf{dy}}{\mathbf{dx}}\mathbf{+mny=0}$.

Ans: 

The given equations are $\text{y=A}{{\text{e}}^{\text{mx}}}\text{+B}{{\text{e}}^{\text{nx}}}$                                     …… (1)

and \[\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{-(m+n)}\frac{\text{dy}}{\text{dx}}\text{+mny=0}\]                                                      ……. (2)

Then, differentiating both sides of the equation (1) with respect to $\text{x}$ gives

$\frac{\text{dy}}{\text{dx}}\text{=A}\text{.}\frac{\text{d}}{\text{dx}}\text{(}{{\text{e}}^{\text{mx}}}\text{)+B}\text{.}\frac{\text{d}}{\text{dx}}\text{(}{{\text{e}}^{\text{mx}}}\text{)=A}\text{.}{{\text{e}}^{\text{mx}}}\text{.}\frac{\text{d}}{\text{dx}}\text{(mx)+B}\text{.}{{\text{e}}^{\text{nx}}}\text{.}\frac{\text{d}}{\text{dx}}\text{(nx)=Am}{{\text{e}}^{\text{mx}}}\text{+Bn}{{\text{e}}^{\text{nx}}}$

Again, differentiating both sides with respect to $\text{x}$ gives

$\begin{align} & \frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}\frac{\text{d}}{\text{dx}}\text{(Am}{{\text{e}}^{\text{mx}}}\text{+Bn}{{\text{e}}^{\text{nx}}}\text{)=Am}\text{.}\frac{\text{d}}{\text{dx}}\text{(}{{\text{e}}^{\text{mx}}}\text{)+Bn}\text{.}\frac{\text{d}}{\text{dx}}\text{(}{{\text{e}}^{\text{nx}}}\text{)} \\ & \text{=Am}\text{.}{{\text{e}}^{\text{mx}}}\text{.}\frac{\text{d}}{\text{dx}}\text{(mx)+Bn}\text{.}{{\text{e}}^{\text{nx}}}\text{.}\frac{\text{d}}{\text{dx}}\text{(nx)} \\ \end{align}$

Therefore, $\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=A}{{\text{m}}^{\text{2}}}{{\text{e}}^{\text{mx}}}\text{+B}{{\text{n}}^{\text{2}}}{{\text{e}}^{\text{nx}}}$.

Thus, substituting the derivatives ${{\text{y}}_{1}}$ ,${{\text{y}}_{2}}$ and $\text{y}$ into the LHS of the equation (2) gives

$\begin{align} & \frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{-(m+n)}\frac{\text{dy}}{\text{dx}}\text{+mny} \\ & \text{=A}{{\text{m}}^{\text{2}}}\text{e}{{\text{x}}^{\text{mx}}}\text{+B}{{\text{n}}^{\text{2}}}{{\text{e}}^{\text{nx}}}\text{-(m+n)}\text{.(Am}{{\text{e}}^{\text{mx}}}\text{+Bn}{{\text{e}}^{\text{nx}}}\text{)+mn(A}{{\text{e}}^{\text{mx}}}\text{+B}{{\text{e}}^{\text{nx}}}\text{)} \\ & \text{=A}{{\text{m}}^{\text{2}}}\text{e}{{\text{x}}^{\text{mx}}}\text{+B}{{\text{n}}^{\text{2}}}{{\text{e}}^{\text{nx}}}\text{-Ame}{{\text{x}}^{\text{mx}}}\text{+Bmn}{{\text{e}}^{\text{nx}}}\text{+Amn}{{\text{e}}^{\text{mx}}}\text{+B}{{\text{n}}^{\text{2}}}{{\text{e}}^{\text{nx}}}\text{+Amn}{{\text{e}}^{\text{mx}}}\text{+Bmn}{{\text{e}}^{\text{nx}}} \\ & \text{=0} \\ \end{align}$

Thus, it has been proved that \[\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{-(m+n)}\frac{\text{dy}}{\text{dx}}\text{+mny=0}\].


15. If $\mathbf{y=500}{{\mathbf{e}}^{\mathbf{7x}}}\mathbf{+600}{{\mathbf{e}}^{\mathbf{-7x}}}$, show that $\frac{{{\mathbf{d}}^{\mathbf{2}}}\mathbf{y}}{\mathbf{d}{{\mathbf{x}}^{\mathbf{2}}}}\mathbf{=49y}$.

Ans: 

The given equation is $\text{y=500}{{\text{e}}^{\text{7x}}}\text{+600}{{\text{e}}^{\text{-7x}}}$.                                     …… (1)

Then, differentiating both sides with respect to $\text{x}$ gives

$\begin{align} & \frac{\text{dy}}{\text{dx}}\text{=500 }\!\!\times\!\!\text{ (}{{\text{e}}^{\text{7x}}}\text{)+600 }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(-7x)} \\ & \text{=500 }\!\!\times\!\!\text{ }{{\text{e}}^{\text{7x}}}\text{ }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(7x)+600 }\!\!\times\!\!\text{ }{{\text{e}}^{\text{-7x}}}\text{ }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(-7x)} \\ & \text{=3500}{{\text{e}}^{\text{7x}}}\text{-4200}{{\text{e}}^{\text{-7x}}} \\ \end{align}$

Again, differentiating both sides with respect to $\text{x}$ gives

$\begin{align} & \frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=3500 }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(}{{\text{e}}^{\text{7x}}}\text{)-4200 }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(}{{\text{e}}^{\text{-7x}}}\text{)} \\ & \text{=3500 }\!\!\times\!\!\text{ }{{\text{e}}^{\text{7x}}}\text{ }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(7x)-4200 }\!\!\times\!\!\text{ }{{\text{e}}^{\text{-7x}}}\text{ }\!\!\times\!\!\text{ }\frac{\text{d}}{\text{dx}}\text{(-7x)} \\ & \text{=7 }\!\!\times\!\!\text{ 3500 }\!\!\times\!\!\text{ }{{\text{e}}^{\text{7x}}}\text{+7 }\!\!\times\!\!\text{ 4200 }\!\!\times\!\!\text{ }{{\text{e}}^{\text{-7x}}} \\ & \text{=49 }\!\!\times\!\!\text{ 500}{{\text{e}}^{\text{7x}}}\text{+49 }\!\!\times\!\!\text{ 600}{{\text{e}}^{\text{-7x}}} \\ & \text{=49(500}{{\text{e}}^{\text{7x}}}\text{+600}{{\text{e}}^{\text{-7x}}}\text{)} \\ \end{align}$

$\text{=49y}$, using the equation (1).

Thus, it has been proved that $\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=49y}$.


16. If ${{\mathbf{e}}^{\mathbf{y}}}\mathbf{(x+1)=1}$, show that $\frac{{{\mathbf{d}}^{\mathbf{2}}}\mathbf{y}}{\mathbf{d}{{\mathbf{x}}^{\mathbf{2}}}}\mathbf{=}{{\left( \frac{\mathbf{dy}}{\mathbf{dx}} \right)}^{\mathbf{2}}}$.

Ans: 

The given equation is ${{\text{e}}^{\text{y}}}\text{(x+1)=1}$.

Now, ${{\text{e}}^{\text{y}}}\text{(x+1)=1}\Rightarrow {{\text{e}}^{\text{y}}}\text{=}\frac{\text{1}}{\text{x+1}}$.

So, taking logarithm bth sides of the equation gives

$\text{y=log}\frac{\text{1}}{\text{(x+1)}}$

Therefore, differentiating both sides with respect to $\text{x}$ gives

$\frac{\text{dy}}{\text{dx}}\text{=(x+1)}\frac{\text{d}}{\text{dx}}\left( \frac{\text{1}}{\text{x+1}} \right)\text{=(x+1) }\!\!\times\!\!\text{ }\frac{\text{-1}}{{{\text{(x+1)}}^{\text{2}}}}\text{=}\frac{\text{-1}}{\text{x+1}}$

That is,

$\frac{\text{dy}}{\text{dx}}=\frac{\text{-1}}{\text{x+1}}$                                                     …… (1)

Again, differentiating both sides with respect to $\text{x}$ gives

$\begin{align} & \frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}\frac{\text{d}}{\text{dx}}\text{=}\left( \frac{\text{1}}{\text{x+1}} \right)\text{=-}\left( \frac{\text{-1}}{{{\text{(x+1)}}^{\text{2}}}} \right)\text{=}\frac{\text{1}}{{{\text{(x+1)}}^{\text{2}}}} \\ & \Rightarrow \frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}{{\left( \frac{\text{-1}}{\text{x+1}} \right)}^{\text{2}}} \\ \end{align}$

$\Rightarrow \frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}{{\left( \frac{\text{dy}}{\text{dx}} \right)}^{\text{2}}}$, using the equation (1).

Thus, it is proved that $\frac{{{\text{d}}^{\text{2}}}\text{y}}{\text{d}{{\text{x}}^{\text{2}}}}\text{=}{{\left( \frac{\text{dy}}{\text{dx}} \right)}^{\text{2}}}$.


17. If $\mathbf{y=(ta}{{\mathbf{n}}^{\mathbf{-1}}}\mathbf{x}{{\mathbf{)}}^{\mathbf{2}}}$, show that ${{\mathbf{(}{{\mathbf{x}}^{\mathbf{2}}}\mathbf{+1)}}^{\mathbf{2}}}{{\mathbf{y}}_{\mathbf{2}}}\mathbf{+2x(}{{\mathbf{x}}^{\mathbf{2}}}\mathbf{+1)}{{\mathbf{y}}_{\mathbf{1}}}\mathbf{=2}$.

Ans:  

The given equations are $\text{y=(ta}{{\text{n}}^{\text{-1}}}\text{x}{{\text{)}}^{\text{2}}}$.

Then, differentiating both sides with respect to $\text{x}$ gives

\[\begin{align} & {{\text{y}}_{\text{1}}}\text{=2ta}{{\text{n}}^{\text{-1}}}\text{x}\frac{\text{d}}{\text{dx}}\text{(ta}{{\text{n}}^{\text{-1}}}\text{x)} \\ & \Rightarrow {{\text{y}}_{\text{1}}}\text{=2ta}{{\text{n}}^{\text{-1}}}\text{x }\!\!\times\!\!\text{ }\frac{\text{1}}{\text{1+}{{\text{x}}^{\text{2}}}} \\ & \Rightarrow \text{(1+}{{\text{x}}^{\text{2}}}\text{)}{{\text{y}}_{\text{1}}}\text{=2ta}{{\text{n}}^{\text{-1}}}\text{x} \\ \end{align}\]

Again, differentiating both sides with respect to $\text{x}$ gives

$\begin{align} & \text{(1+}{{\text{x}}^{\text{2}}}\text{)}{{\text{y}}_{\text{2}}}\text{+2x}{{\text{y}}_{\text{1}}}\text{=2}\left( \frac{\text{1}}{\text{1+}{{\text{x}}^{\text{2}}}} \right) \\ & \Rightarrow \text{(1+}{{\text{x}}^{\text{2}}}\text{)}{{\text{y}}_{\text{2}}}\text{+2x(1+}{{\text{x}}^{\text{2}}}\text{)}{{\text{y}}_{\text{1}}}\text{=2} \\ \end{align}$

Thus, it has been proved that $\text{(1+}{{\text{x}}^{\text{2}}}\text{)}{{\text{y}}_{\text{2}}}\text{+2x(1+}{{\text{x}}^{\text{2}}}\text{)}{{\text{y}}_{\text{1}}}\text{=2}$.


Conclusion

Exercise 5.7 of Chapter 5 in Class 12 Maths focuses on second order derivatives, a crucial concept for understanding the behavior of functions. It is important to focus on accurately calculating second order derivatives. Regular practice of these problems will enhance your ability to analyze functions effectively. Vedantu's solutions provide detailed, step-by-step explanations to help you master these concepts, ensuring you are well-prepared for your exams. By understanding and practicing these key ideas, you'll build a solid foundation in calculus, which is essential for success in higher mathematics and various applications.


Class 12 Maths Chapter 5: Exercises Breakdown

S.No.

Chapter 5 - Continuity and Differentiability Exercises in PDF Format

1

Class 12 Maths Chapter 5 Exercise 5.1 - 34 Questions & Solutions (10 Short Answers, 24 Long Answers)

2

Class 12 Maths Chapter 5 Exercise 5.2 - 10 Questions & Solutions (2 Short Answers, 8 Long Answers)

3

Class 12 Maths Chapter 5 Exercise 5.3 - 15 Questions & Solutions (9 Short Answers, 6 Long Answers)

4

Class 12 Maths Chapter 5 Exercise 5.4 - 10 Questions & Solutions (5 Short Answers, 5 Long Answers)

5

Class 12 Maths Chapter 5 Exercise 5.5 - 18 Questions & Solutions (4 Short Answers, 14 Long Answers)

6

Class 12 Maths Chapter 5 Exercise 5.6 - 11 Questions & Solutions (7 Short Answers, 4 Long Answers)

7

Class 12 Maths Chapter 5 Miscellaneous Exercise - 22 Questions & Solutions



CBSE Class 12 Maths Chapter 5 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

WhatsApp Banner

FAQs on CBSE Class 12 Mathematics Chapter 5 Continuity and Differentiability – NCERT Solutions 2025-26

1. What is the correct stepwise method for finding the second order derivative of a function in NCERT Solutions for Class 12 Maths Chapter 5?

The stepwise method for second order derivatives as per Class 12 Maths NCERT Solutions involves:

  • Differentiating the given function with respect to x to obtain the first derivative (dy/dx).
  • Once you have the first derivative, differentiate it again with respect to x to find the second derivative (d²y/dx²).
  • Write each derivative step clearly and simplify algebraically, following the official CBSE 2025–26 marking pattern.

2. How is the chain rule applied in solving NCERT Class 12 Maths Chapter 5 Exercise 5.7 problems?

The chain rule is used to find the derivative of composite functions. Apply it by differentiating the outer function while keeping the inner function unchanged, then multiplying by the derivative of the inner function. For example, for y = f(g(x)), the derivative is f’(g(x)) · g’(x). This approach must be shown stepwise in all relevant NCERT exercise solutions for accurate scoring.

3. Why does NCERT Solutions for Chapter 5 require stepwise answers rather than shortcut solutions?

Stepwise answers are essential because the CBSE board exam awards marks for each clear mathematical operation—such as applying rules, writing formulas, and showing intermediate steps. Skipping steps may result in loss of marks, even if the final answer is correct. Following the stepwise format in NCERT Solutions ensures maximum clarity, error-minimization, and alignment with the CBSE marking scheme.

4. Which formulas must be memorized for Continuity and Differentiability in the CBSE 2025–26 board exams?

You should focus on the following key formulas:

  • Chain Rule: d/dx [f(g(x))] = f’(g(x)) · g’(x)
  • Derivatives of trigonometric functions
  • Derivatives of exponential and logarithmic functions
  • Derivatives of inverse trigonometric functions, such as d/dx [sin−1x] = 1/√(1−x2)
  • Implicit differentiation technique
Practicing these with NCERT Solutions ensures you can apply them in all exam scenarios.

5. What are the main topics covered in NCERT Class 12 Maths Chapter 5 Exercise 5.7?

Exercise 5.7 of Chapter 5 covers second order derivatives, advanced use of the chain rule, application of implicit differentiation, and derivatives of exponential, logarithmic, and trigonometric functions. These are essential for mastering continuity and differentiability in alignment with the CBSE syllabus.

6. How should one approach implicit differentiation questions in NCERT Solutions for Exercise 5.7?

To solve implicit differentiation questions:

  • Differenti­ate both sides with respect to x.
  • Whenever y appears, treat it as an implicit function and multiply its derivative by dy/dx.
  • Gather all dy/dx terms on one side and solve algebraically.
This approach matches the stepwise requirements of the CBSE board.

7. How does practicing NCERT Solutions for Chapter 5 enhance problem-solving skills for board exams?

Regular practice with NCERT Solutions strengthens your conceptual clarity, reinforces understanding of foundational calculus techniques, and helps you internalize the official CBSE step-marking pattern. This proficiency is crucial for scoring high and minimising errors in the Continuity and Differentiability chapter during board exams.

8. What is the stepwise approach to proving identities or differential equations in NCERT Solutions for this chapter?

The process for proving differential identities requires:

  • Writing the given equation clearly.
  • Differentiating step by step as guided by the question (first derivative, then second, etc.).
  • Substituting derivatives back into the original equation.
  • Simplifying and showing that both sides are equal, strictly as per NCERT Solutions.
This aligns with CBSE's expectations for method-based answers.

9. How can students avoid common mistakes while solving continuity and differentiability problems using NCERT Solutions?

To avoid common errors:

  • Always write standard formulas and substitution steps.
  • Be careful with the sign and application of the chain and product rules.
  • Simplify after every major step rather than postponing till the final answer.
  • Cross-check limits, especially for continuity verification at a point.
NCERT Solutions reinforce these best practices for a thorough understanding.

10. Why is understanding second order derivatives important in calculus and its applications?

Second order derivatives provide information about the concavity and inflection points of functions, which helps in analyzing the behavior of graphs, optimizing functions, and modelling real-life phenomena such as acceleration in physics. Mastery of these concepts in Chapter 5 builds a strong foundation for advanced mathematics and competitive exams like JEE and NEET.

11. What procedure is followed in NCERT Solutions to verify the continuity of a function at a point?

To check continuity in NCERT Solutions:

  • Calculate the left-hand limit (LHL) and right-hand limit (RHL) at the point.
  • Find the function value at that point.
  • If LHL = RHL = function value, the function is continuous there.
This method is explicitly demonstrated in step-by-step solutions for board-preparedness.

12. In what ways do NCERT Solutions for Chapter 5 align with the latest CBSE board exam requirements?

These solutions are peer-reviewed for conceptual accuracy, use latest formulas, follow a step-marking format, and are mapped to the CBSE 2025–26 syllabus. They ensure students' answers conform with the board's expectations for clarity, reasoning, and methodology.