Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 5 Continuity And Differentiability Ex 5.6

ffImage
banner

NCERT Solutions for Class 12 Maths Exercise 5.6 Continuity and Differentiability - FREE PDF Download

The NCERT Solutions for Class 12 Maths Chapter 5 Exercise 5.6 cover essential concepts of continuity and differentiability. These solutions help you understand how to determine the continuity of functions and differentiate various functions, which are crucial for calculus. These NCERT solutions Ex 5.6 Class 12 are based on the latest CBSE syllabus and are helpful for quick revisions. Download the NCERT Solutions for Class 12 Maths and practice to score well. Focus on understanding the fundamental principles and solving a variety of problems to strengthen your grasp of the topic in Class 12 Ex 5.6.

toc-symbolTable of Content
toggle-arrow


Glance on NCERT Solutions Maths Chapter 5 Exercise 5.6 Class 12 | Vedantu

  • This exercise explains the Derivatives of Functions in Parametric Forms.

  • The chain rule connects the derivatives of parametric equations concerning the parameter.

  • This technique applies to differentiating trigonometric, exponential, and logarithmic parametric functions.

  • Converting parametric equations to their standard forms helps in finding derivatives.

  • Understanding parametric derivatives is vital for analysing motion along a path and curve properties.

  • There are eleven questions in Maths Ex 5.6 Class 12 which are fully solved by experts at Vedantu.


Formulas Used in Class 12 Chapter 5 Exercise 5.6

  • Derivative of Parametric Functions: 

$\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}$

  • Second Derivative in Parametric Form: 

$\frac{d^{2}y}{dx^{2}}=\frac{d}{dt}\left ( \frac{dy}{dx} \right )\cdot \frac{1}{\frac{dx}{dt}}$

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Maths Class 12 Chapter 5 - Continuity and Differentiability

Exercise 5.6

If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find $\mathbf{\frac{dy}{dx}}$.


1. x=2at2 , y=at4

Ans: The given equations are  

x=2at2 …… (1) 

and y=at4 …… (2) 

Then, differentiating both sides of the equation (1) with respect to t gives

$\frac{dx}{dy} = \frac{d}{dt}(2at^{2})= 2a \times \frac{d}{dt}(t^2)= 2a \times 2t = 4at$.......(3)

Also, differentiating both sides of the equation (2) with respect to t gives

$\frac{dy}{dt} = \frac{d}{dt}(2at^{4})= a \times 4 \times \frac{d}{dt}(t^4)= a \times 4 \times t^3 = 4at^3$.........(4)

Now, dividing the equations (4) by (3) gives 

$\frac{dy}{dx}= \frac{(\frac{dy}{dt})}{(\frac{dx}{dt})}= \frac{4at^3}{4at} = t^2$

Hence $\frac{dy}{dx}=t^2$.


2. x=acosθ, y=bcosθ

Ans: The given equations are  

x=acosθ …… (1) 

and y=bcosθ …… (2) 

Then, differentiating both sides of the equation (1) with respect to θ gives

$\frac{dx}{d\theta }= \frac{d}{d\theta }= (a\cos \theta ) =a(-\sin \theta ) = -a\sin \theta$.....(3)

Also, differentiating both sides of the equation (1) with respect to θgives

$\frac{dy}{d\theta }= \frac{d}{d\theta }= (b\cos \theta ) =b(-\sin \theta ) = -b\sin \theta$......(4)

Therefore, dividing the equation (4) by (3) gives 

$\frac{dy}{dx} = \frac{(\frac{dy}{d\theta })}{(\frac{dx}{d\theta })}= \frac{-b \sin\theta }{-a\sin\theta }= \frac{b}{a}$

Hence, $\frac{dy}{dx} =  \frac{b}{a}$


3. x=sint, y=cos2t

Ans: The given equations are 

x=sint …… (1) 

and y=cos2t …… (2) 

Then, differentiating both sides of the equation (1) with respect to t gives 

$\frac{dx}{dt} = \frac{d}{dt}(\sin\theta ) = \cos\theta ......(3)$

Also, differentiating both sides of the equation (2) with respect to t gives

$\frac{dy}{dt} = \frac{d}{dt}(\cos2\theta ) = \sin 2\theta  \times \frac{d}{dt}(2t)= -2\sin2t......(4)$

Therefore,  by dividing the equation (4) by (3) gives 

$\frac{dy}{dx} = \frac{(\frac{dy}{dt})}{(\frac{dx}{dt})} = \frac{-2 \sin 2t}{cos t} = \frac{-2 \times 2 \sin t \cos t}{\cos t} = -4 \sin t$

Hence, $\frac{dy}{dx} =   -4 \sin t$


4. x=4t,  y = $\mathbf{\frac{4}{t}}$

Ans: The given equations are 

x=4t …… (1) 

 y = $\frac{4}{t}$ ……(2)

Now, differentiating both sides of the equation (1) with respect to t gives 

$\frac{dy}{dx} =\frac{d}{dt}(4t)=4......(3)$

Also, differentiating both sides of the equation (2) with respect to t gives 

$\frac{dy}{dt}= \frac{d}{dt}(\frac{4}{t}) = 4 \times \frac{d}{dt}\frac{1}{t}= 4 \times \frac{-1}{t^2}= \frac{-4}{t^2}.......(4)$

Therefore, dividing the equation (4) by (3) gives 

$\frac{dy}{dx} = \frac{(\frac{dy}{dt})}{(\frac{dx}{dt})} = \frac{(\frac{-4}{t^2})}{4} = \frac{-1}{t^2} $

Hence, $\frac{dy}{dx} = \frac{-1}{t^2} $

 

5. x=cosθ-cos2θ, y=sinθ-sin2θ

Ans: The given equations are 

x=cosθ-cos2θ …… (1) 

and y=sinθ-sin2θ …… (2) 

Then, differentiating both sides of the equation (1) with respect to θ gives 

$\frac{dx}{d\theta } = \frac{d}{d\theta }(\cos \theta - \cos 2\theta ) = \frac{d}{dt}(\cos \theta )- \frac{d}{d\theta }(cos 2\theta )= -\sin \theta (-2 \sin 2\theta ) = 2 \sin 2\theta - \sin\theta ………..(3)$

Also, differentiating both sides of the equation (2) with respect to θ gives 

$\frac{dy}{d\theta } = \frac{d}{d\theta }(\sin \theta - \sin 2\theta ) = \frac{d}{d\theta }(\sin \theta )- \frac{d}{d\theta }(sin 2\theta )= \cos \theta - 2 \cos\theta .......(4)$

Therefore, dividing the equation (4) by (3) gives

$\frac{dy}{dx} = \frac{(\frac{dy}{d\theta })}{(\frac{dx}{d\theta })}= \frac{\cos\theta - 2 \cos\theta  }{2 \sin 2\theta - \sin\theta }$

Hence, $\frac{dy}{dx} =  \frac{\cos\theta - 2 \cos\theta  }{2 \sin 2\theta - \sin\theta }$


6. x=a(θ-sinθ), y=a(1+cosθ)

Ans: The given equations are 

x=a(θ-sinθ) …… (1) 

and y=a(1+cosθ) …… (2) 

Then, differentiating both sides of the equation (1) with respect to θ gives

$\frac{dx}{d\theta }= a[\frac{d}{d\theta }(\theta ) - \frac{d}{d\theta }(\sin \theta )] = a(1 - \cos \theta )$

Also, differentiating both sides of the equation (2) with respect to θ gives 

$\frac{dy}{d\theta }= a[\frac{d}{d\theta }(1) - \frac{d}{d\theta }(\cos \theta )] = a[0 + (- \sin \theta )] = -a \sin \theta ........(4)$

Therefore, by dividing the equation (4) by (3) gives 

$\frac{dy}{dx} = \frac{(\frac{dy}{d\theta })}{(\frac{dx}{d\theta })}= \frac{-a \sin \theta }{a(1- \cos\theta )}=\frac{-2 \sin\frac{\theta }{2} \cos \frac{\theta }{2}}{2 \sin ^2\frac{\theta }{2}}= \frac{-\cos\frac{\theta }{2}}{\sin \frac{\theta }{2}}= -\cos\frac{\theta }{2}$

Hence, $\frac{dy}{dx} =  -\cos\frac{\theta }{2}$


7. $-\frac{sin^3 t}{\sqrt{cos 2t}} , y = \frac{cos^3 t}{\sqrt{cos 2t}}$ 

Ans: The given equations are, 

$x = - \frac{\sin^3 t}{\sqrt{\cos 2t}} ......... (1)$

$y = - \frac{\cos^3 t}{\sqrt{\cos 2t}} ......... (2)$

Then, differentiating both sides of the equation (1) with respect to t gives 

$\begin{aligned}&\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left[\frac{\sin ^{3} \mathrm{t}}{\sqrt{\cos 2 \mathrm{t}}}\right] \\ \\&=\frac{\sqrt{\cos 2 \mathrm{t}}-\frac{\mathrm{d}}{\mathrm{dt}}\left(\sin ^{3} \mathrm{t}\right)-\sin ^{3} \mathrm{t} \times \frac{\mathrm{d}}{\mathrm{dt}} \sqrt{\cos 2 \mathrm{t}}}{\cos 2 \mathrm{t}} \\  \\&=\frac{\sqrt{\cos 2 \mathrm{t}} \times 3 \sin ^{2} \mathrm{t} \times \frac{\mathrm{d}}{\mathrm{dt}}(\sin \mathrm{t})-\sin ^{3} \mathrm{t} \times \frac{1}{2 \sqrt{\cos 2 \mathrm{t}}} \times \frac{\mathrm{d}}{\mathrm{dt}}(\cos 2 \mathrm{t})}{\cos 2 \mathrm{t}} \\ \\&=\frac{3 \sqrt{\cos 2 \mathrm{t}} \times \sin ^{2} \mathrm{t} \cos \mathrm{t}-\frac{\sin ^{3} \mathrm{t}}{2 \sqrt{\cos 2 \mathrm{t}}} \times(-2 \sin 2 \mathrm{t})}{\cos 2 \mathrm{t} \sqrt{\cos 2 \mathrm{t}}}\end{aligned}$

Also, differentiating both sides of the equation (2) with respect to $t$ gives 

$\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{3 \cos 2 \mathrm{t} \sin ^{2} t \cos t+\sin ^{2} t \sin 2 \mathrm{t}}{\cos 2 \mathrm{t} \sqrt{\cos 2 \mathrm{t}}} . \ldots \ldots$ (3)$

$\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left[\frac{\cos ^{3} \mathrm{t}}{\sqrt{\cos 2 \mathrm{t}}}\right]$

$\begin{aligned}&=\frac{\sqrt{\cos 2 \mathrm{t}} \times \frac{\mathrm{d}}{\mathrm{dt}}\left(\cos ^{3} \mathrm{t}\right)-\cos ^{3} \mathrm{t} \times \frac{\mathrm{d}}{\mathrm{dt}}(\sqrt{\cos 2 \mathrm{t}})}{\cos 2 \mathrm{t}} \\ \\&=\frac{3 \sqrt{\cos 2 \mathrm{t} \cos ^{2} \mathrm{t}(-\sin t)-\cos ^{3} t \times \frac{1}{2(\sqrt{\cos 2 t})}} \times \frac{\mathrm{d}}{\mathrm{dt}}(\cos 2 \mathrm{t})}{\cos 2 \mathrm{t}} \\&\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{-3 \cos 2 \mathrm{t} \times \cos ^{2} \mathrm{t} \times \sin t+\cos ^{3} \mathrm{t} \sin 2 \mathrm{t}}{\cos 2 \mathrm{t} \times \sqrt{\cos 2 \mathrm{t}}} \ldots \ldots \text { (4) }\end{aligned}$

Thus, dividing the equation (4) by the equation (3) gives

$\frac{d y}{d x}=\frac{\left(\frac{d x}{d t}\right)}{\left(\frac{d x}{d t}\right)}=\frac{-3 \cos 2 t \times \cos ^{2} t \times \sin t+\cos ^{3} t \sin 2 t}{3 \cos 2 t \cos t \sin ^{2} t+\sin ^{3} t \sin 2 t}$

$\begin{aligned}&=\frac{\sin t \cos t\left[-3 \cos 2 t \times \cos t+2 \cos ^{3} t\right]}{\sin t \cos t\left[3 \cos 2 t \sin t+2 \sin ^{3} t\right]}  \\ \\&=\frac{\left[-3\left(2 \cos ^{2} t-1\right) \cos t+2 \cos ^{3} t\right]}{\left[3\left(1-2 \sin ^{3} t\right) \sin t+2 \sin ^{3} t\right]} \quad\left[\begin{array}{l}\cos 2 t=\left(2 \cos ^{2} t-1\right) \\\cos 2 t=\left(1-2 \sin ^{2} t\right)\end{array}\right] \\ \\&=\frac{-4 \cos ^{3} t+3 \cos t}{3 \sin t-4 \sin ^{3} t} \\ \\&=\frac{-\cos 3 t}{\sin 3 t} \\  \\&\text { Hence, } \frac{d y}{d x}=-\cot 3 t .\end{aligned}$


8. $\mathbf{x=a\left(\operatorname{cost}+\log \tan \frac{t}{2}\right), y=a \sin t}$

Ans: The given equations are

$x=a\left(\cos t+\log \tan \frac{t}{2}\right) \ldots \ldots$ (1)

and $y=a \sin t \quad \ldots \ldots(2)$

Then, differentiating both sides of the equation (1) with respect to $t$ gives $\frac{d x}{d t}=a \times\left[\frac{d}{d \theta}(\operatorname{cost})+\frac{d}{d \theta}\left(\log \tan \frac{t}{2}\right)\right]$

$\begin{aligned}&=\mathrm{a}\left[-\operatorname{sint}+\frac{1}{\tan\frac{\mathrm{t}}{2}} \times \frac{\mathrm{d}}{\mathrm{dt}}\left(\tan \frac{\mathrm{t}}{2}\right)\right] \\&=\mathrm{a}\left[-\sin \mathrm{t}+\cot \frac{\mathrm{t}}{2} \times \sec ^{2} \frac{\mathrm{t}}{2}\times\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\mathrm{t}}{2}\right)\right]\\&=\mathrm{a}\left[-\operatorname{sint}+\frac{\cos \frac{\mathrm{t}}{2}}{\sin \frac{\mathrm{t}}{2}} \times \frac{1}{\cos ^{2} \frac{\mathrm{t}}{2}} \times \frac{1}{2}\right)\end{aligned}$

$\begin{aligned}&=a\left(-\sin t+\frac{1}{2 \sin \frac{t}{2} \cos \frac{t}{2}}\right) \\&=a\left(-\sin t+\frac{1}{\sin t}\right) \\&=a\left(\frac{-\sin ^{2} t+1}{\sin t}\right) \\&\text { Therefore, } \frac{d x}{d t}=a \frac{\cos ^{2} t}{\sin t}\end{aligned}$

Also, differentiating both sides of the equation (2) with respect to $t$ gives $\frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{a} \frac{\mathrm{d}}{\mathrm{dt}}(\sin t)=\mathrm{acost} \ldots \ldots(4)$

Thus, dividing the equation (4) by the equation (3) gives

$\frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)}=\frac{a \cos t}{\left(a \frac{\cos ^{2} t}{\sin t}\right)}=\frac{\sin t}{\cos t}=\operatorname{tant}$

Hence, $\frac{d y}{d x}=\tan t$.


9. $\mathbf{x=a s e c \theta, y=b \tan \theta}$

Ans: The given equations are

$\mathrm{x}=\operatorname{asec} \quad \ldots \ldots$ (1)

and $y=\tan \theta \quad \ldots \ldots$ (2)

Then, differentiating both sides of the equation (1) with respect to $\theta$ gives $\frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a} \times \frac{\mathrm{d}}{\mathrm{d} \theta}(\sec \theta)=\operatorname{asec} \theta \tan \theta \ldots \ldots$ (3)

Also, differentiating both sides of the equation (2) with respect to $\theta$ gives $\frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{b} \times \frac{\mathrm{d}}{\mathrm{d} \theta}(\tan \theta)=\mathrm{b} \sec ^{2} \theta \ldots \ldots$ (4)

Thus, dividing the equation (4) by the equation (3) gives

$\frac{d y}{d x}=\frac{\left(\frac{d y}{d \theta}\right)}{\left(\frac{d x}{d \theta}\right)}=\frac{b \sec ^{2} \theta}{a \sec \theta \tan \theta}=\frac{b}{a} \sec \theta \tan \theta=-\frac{b \cos \theta}{a \cos \theta \sin \theta}=\frac{b}{a} \times \frac{1}{\sin \theta}=\frac{b}{a} \cos$

Hence, $\frac{d y}{d x}=\frac{b}{a} \operatorname{cosec} \theta$.


10. $\mathbf{x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)}$

Ans: The given equations are

$\mathrm{x}=\mathrm{a}(\cos \theta+\theta \sin \theta) \quad \ldots \ldots$ (1)

and $\mathrm{y}=\mathrm{a}(\sin \theta-\theta \cos \theta) \ldots \ldots$ (2)

Then, differentiating both sides of the equation (1) with respect to $\theta$ gives $\frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}\left[\frac{\mathrm{d}}{\mathrm{d} \theta} \cos \theta+\frac{\mathrm{d}}{\mathrm{d} \theta}(\theta \sin \theta)\right]=\mathrm{a}\left[-\sin \theta+\theta \frac{\mathrm{d}}{\mathrm{d} \theta}(\sin \theta)+\sin \theta \frac{\mathrm{d}}{\mathrm{d} \theta}(\theta)\right]$ $=\mathrm{a}[-\sin \theta+\theta \cos \theta+\sin \theta]$.

Therefore, $\frac{\mathrm{d} \mathrm{x}}{\mathrm{d} \theta}=\mathrm{a} \theta \cos \theta$(3)

Also, differentiating both sides of the equation (2) with respect to $\theta$ gives $\frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{a}\left[\frac{\mathrm{d}}{\mathrm{d} \theta}(\sin \theta)-\frac{\mathrm{d}}{\mathrm{d} \theta}(\theta \cos \theta)\right]=\mathrm{a}\left[\cos \theta-\left\{\theta \frac{\mathrm{d}}{\mathrm{d} \theta}(\cos \theta)+\cos \theta \times \frac{\mathrm{d}}{\mathrm{d} \theta}(\theta)\right\}\right]$

$\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{a}[\cos \theta+\theta \sin \theta-\cos \theta]$

Therefore, $\frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{a} \theta \sin \theta \quad \ldots \ldots$ (4)

Thus, dividing the equation (4) by the equation (3) gives

$\frac{d y}{d x}=\frac{\left(\frac{d y}{d \theta}\right)}{\left(\frac{d x}{d \theta}\right)}=\frac{a \theta \sin \theta}{a \theta \sin \theta}=\tan \theta \text {. }$

Hence, $\frac{d y}{d x}=\tan \theta$.


11. If $\mathbf{x=\sqrt{a^{\sin ^{-1} t}}, y=\sqrt{a^{\cos ^{-1} t}}}$.Show that $\mathbf{\frac{d y}{d x}=-\frac{y}{x}}$

Ans: The given parametric equations are $x=\sqrt{a^{\sin ^{-1} t}}$ and $y=\sqrt{a^{\cos ^{-1} t}}$.

Now, $x=\sqrt{a^{\sin ^{-1} t}}$ and $y=\sqrt{a^{\cos ^{-1} t}}$

$\Rightarrow \mathrm{x}=\left(\mathrm{a}^{\sin ^{-1} \mathrm{t}}\right)$ and $\mathrm{y}=\left(\mathrm{a}^{\cos ^{-1} \mathrm{t}}\right)^{\frac{1}{2}}$

$\Rightarrow \mathrm{x}=\mathrm{a}^{\frac{1}{2} \sin ^{-1 \mathrm{t}}}$ and $\mathrm{y}=\mathrm{a}^{\frac{1}{2} \cos ^{-1} \mathrm{t}}$

Therefore, first consider $x=a^{\frac{1}{2} \sin ^{-1} t}$.

Take logarithms on both sides of the equation.

Then, we have

$\log x=\frac{1}{2} \sin ^{-1}$ tloga .

Then, differentiating both sides of the equation with respect to $t$ gives

$\begin{aligned}&\frac{1}{x} \times \frac{d x}{d t}=\frac{1}{2} \log a \times \frac{d}{d t}\left(\sin ^{-1} t\right) \\&\Rightarrow \frac{d x}{d t}=\frac{x}{2} \log a \times \frac{1}{\sqrt{1-t^{2}}} \\&\text { Therefore, } \frac{d x}{d t}=\frac{x \log a}{2 \sqrt{1-t^{2}}} . \ldots \ldots \text { (1) }\end{aligned}$

Again, consider the equation $y=a^{\frac{1}{2} \cos ^{-1} t}$.

Take logarithm both sides of the equation.

Then, we have

$\log y=\frac{1}{2} \cos ^{-1} \text { tloga }$

Differentiating both sides of the equation with respect to $\mathrm{t}$ gives $\frac{1}{y} \times \frac{d x}{d t}=\frac{1}{2} \log a \times \frac{d}{d t}\left(\cos ^{-1} t\right)$

$\begin{aligned}&\frac{1}{y} \times \frac{d x}{d t}=\frac{1}{2} \log a \times \frac{d}{d t}\left(\cos ^{-1} t\right) \\&\Rightarrow \frac{d x}{d t}=\frac{y \log a}{2} \times\left(\frac{1}{\sqrt{1-t^{2}}}\right)\end{aligned}$

Therefore, $\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{-\mathrm{yloga}}{2 \sqrt{1-\mathrm{t}^{2}}}$.

$\frac{dy}{dx} = \frac{(\frac{dy}{dt})}{(\frac{dx}{dt})} = \frac{(\frac{-y \log a}{2\sqrt{1- t^2}})}{(\frac{x \log }{2 \sqrt{1 - t^2}})} = \frac{y}{x}$

 Hence, $\frac{dy}{dx} = \frac{y}{x}$


Conclusion

In conclusion, Ex 5.6 Class 12 Maths Chapter 5 is essential for mastering the derivatives of functions expressed in parametric forms. This exercise builds a strong foundation in applying the chain rule to relate the derivatives of parametric equations. It's important to focus on understanding how to convert parametric equations into standard forms to effectively find their derivatives. By practising these solutions, you will enhance your problem-solving skills and be well-prepared for CBSE board exams. Download the NCERT Solutions for Class 12 Ex 5.6 Maths and practice regularly to score well in your exams.


Class 12 Maths Chapter 5: Exercises Breakdown

S.No.

Chapter 5 - Continuity and Differentiability Exercises in PDF Format

1

Class 12 Maths Chapter 5 Exercise 5.1 - 34 Questions & Solutions (10 Short Answers, 24 Long Answers)

2

Class 12 Maths Chapter 5 Exercise 5.2 - 10 Questions & Solutions (2 Short Answers, 8 Long Answers)

3

Class 12 Maths Chapter 5 Exercise 5.3 - 15 Questions & Solutions (9 Short Answers, 6 Long Answers)

4

Class 12 Maths Chapter 5 Exercise 5.4 - 10 Questions & Solutions (5 Short Answers, 5 Long Answers)

5

Class 12 Maths Chapter 5 Exercise 5.5 - 18 Questions & Solutions (4 Short Answers, 14 Long Answers)

6

Class 12 Maths Chapter 5 Exercise 5.7 - 17 Questions & Solutions (10 Short Answers, 7 Long Answers)

7

Class 12 Maths Chapter 5 Miscellaneous Exercise - 22 Questions & Solutions



CBSE Class 12 Maths Chapter 5 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

WhatsApp Banner
Best Seller - Grade 12 - JEE
View More>
Previous
Next

FAQs on NCERT Solutions for Class 12 Maths Chapter 5 Continuity And Differentiability Ex 5.6

1. What is the correct step-by-step method for solving parametric differentiation problems in NCERT Solutions for Class 12 Maths Chapter 5?

The systematic method involves:

  • Differentiating x and y with respect to the given parameter (like t or θ).
  • Applying the formula dy/dx = (dy/dt) / (dx/dt) as prescribed in the CBSE 2025–26 syllabus.
  • Simplifying the result as per the requirements of the question and CBSE marking scheme.

2. How does the chain rule relate to parametric differentiation in NCERT Solutions for Class 12 Maths Chapter 5?

Parametric differentiation uses the chain rule to connect derivatives of x and y with respect to a parameter. You find dx/dt and dy/dt separately, then divide: dy/dx = (dy/dt) / (dx/dt). This approach is emphasized in NCERT for solving parametric forms in calculus.

3. What common mistakes should be avoided when solving NCERT parametric differentiation questions in Exercise 5.6?

Students should avoid:

  • Forgetting to differentiate both x and y with respect to the parameter.
  • Incorrectly applying the product or quotient rule in complex cases.
  • Not simplifying dy/dx as per the final answer expectations.
  • Eliminating the parameter without being specifically asked.

4. Why is understanding parametric equations and their differentiation important for board exams as per the NCERT Solutions for Class 12 Maths?

Mastering parametric equations allows you to represent curves and motion flexibly. Differentiating them is crucial for analyzing rates, directions, and geometrical properties in calculus, which forms a fundamental part of the CBSE 2025–26 syllabus and is frequently assessed in board exams.

5. How are trigonometric and logarithmic functions differentiated in parametric forms in NCERT Solutions for Class 12 Maths Chapter 5?

Each function—trigonometric or logarithmic—must be differentiated with respect to the parameter using their respective rules. For example, for x = sin t, differentiate to get dx/dt = cos t. Once dx/dt and dy/dt are found, use dy/dx = (dy/dt)/(dx/dt) as outlined in NCERT Solutions.

6. What are the key formulas covered in Exercise 5.6 for parametric differentiation in NCERT Solutions for Class 12 Maths?

Essential formulas include:

  • dy/dx = (dy/dt) / (dx/dt) for first-order derivatives.
  • d2y/dx2 = d/dt(dy/dx) × 1/(dx/dt) for the second derivative in parametric form, useful for curve analysis.

7. What misconceptions may students have about eliminating the parameter in parametric differentiation questions as per the NCERT approach?

A common misconception is that the parameter must always be eliminated before differentiating. In Exercise 5.6 of NCERT Class 12 Maths, you typically compute dy/dx directly using the parameter, unless elimination is specifically requested.

8. In which situations should you use the second derivative in parametric form as found in NCERT Solutions for Class 12 Maths Chapter 5?

The second derivative, d2y/dx2 = d/dt(dy/dx) × 1/(dx/dt), is used when analyzing curve properties, such as curvature or points of inflection. Problems asking about slope variation or nature of stationary points require this concept.

9. How do NCERT Solutions for Class 12 Maths Chapter 5 ensure alignment with the latest CBSE 2025–26 syllabus and exam pattern?

The solutions follow the official CBSE syllabus structure:

  • They cover all prescribed types of differentiation and methodology.
  • Solutions match the presentation style and clarity expected for board examination marking.
  • All logic follows current syllabus guidelines for Class 12 Maths, Chapter 5.

10. How does practice with NCERT Solutions for Exercise 5.6 help students develop advanced calculus problem-solving skills?

Regular practice with parametric differentiation improves the handling of chain rule, strengthens understanding of multiple function types, and builds analytical reasoning required for advanced calculus, as well as real-world mathematical modeling.