Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 11 Maths Chapter 7 Binomial Theorem

ffImage
banner

NCERT Solutions for Maths Binomial Theorem Class 11 Chapter 7 - FREE PDF Download

By referring to NCERT Solutions for Binomial Theorem Class 11 Maths Chapter 7, students are able to Understand the topics covered in this chapter in detail according to the CBSE Class 11 Maths Syllabus. The binomial theorem is defined as the process of algebraically expanding the power of sums of two or more binomials. Coefficients of binomial terms in the process of expansion are referred to as binomial coefficients. 

toc-symbolTable of Content
toggle-arrow


Our subject experts at Vedantu have solved all the sums and explained all the topics covered in this chapter according to the CBSE guidelines in these NCERT Solutions Class 11 Maths. You can download these solutions from Vedantu for free.


Access Exercise wise NCERT Solutions for Chapter 7 Maths Class 11

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Exercises Under NCERT Solutions for Class 11 Maths Chapter 7 Binomial Theorem

Exercise 7.1: This exercise consists of 14 questions and introduces students to the concept of binomial theorem. The questions are based on various concepts such as expanding binomial expressions, finding the middle terms of a binomial expansion, and solving problems related to the binomial theorem. Students will learn how to expand binomial expressions using the binomial theorem.


Miscellaneous Exercise: This exercise consists of 6 questions and covers a variety of topics related to binomial theorem. The questions are based on various concepts such as solving problems related to the number of terms in a binomial expansion, finding the sum of the terms in a binomial expansion, and solving word problems related to binomial theorem. This exercise will help students to revise and reinforce the concepts learned in the previous exercises.


Overall, the exercises in NCERT Solutions for Class 11 Maths Chapter  7 – Binomial Theorem are designed to help students understand and apply the concepts of binomial theorem in various scenarios. The solutions to these exercises are provided in the textbook, which will help students to check their answers and understand the concepts better.


Access NCERT Solutions for Class 11 Maths Chapter 7 – Binomial Theorem

Exercise 7.1

1. Expand the expression ${\left( {1 - 2x} \right)^5}$.

Ans. By using Binomial Theorem, the expression ${\left( {1 - 2x} \right)^5}$ can be expanded as

\[\begin{gathered} {\left( {1 - 2x} \right)^5} = {}^5{C_0}{\left( 1 \right)^5} - {}^5{C_1}{\left( 1 \right)^4}\left( {2x} \right) + {}^5{C_2}{\left( 1 \right)^3}{\left( {2x} \right)^2} - {}^5{C_3}{\left( 1 \right)^2}{\left( {2x} \right)^3} + {}^5{C_4}{\left( 1 \right)^1}{\left( {2x} \right)^4} \\ - {}^5{C_5}{\left( {2x} \right)^5} \\ = 1 - 5\left( {2x} \right) + 10\left( {4{x^2}} \right) - 10\left( {8{x^3}} \right) + 5\left( {16{x^4}} \right) - 32{x^5} \\ = 1 - 10x + 40{x^2} - 80{x^3} + 80{x^4} - 32{x^5} \\ \end{gathered}\]


2. Expand the expression ${\left( {\frac{2}{x} - \frac{x}{2}} \right)^5}$.

Ans. By using Binomial Theorem, the expression ${\left( {\frac{2}{x} - \frac{x}{2}} \right)^5}$ can be expanded as

\[\begin{gathered} {\left( {\frac{2}{x} - \frac{x}{2}} \right)^5} = {}^5{C_0}{\left( {\frac{2}{x}} \right)^5} - {}^5{C_1}{\left( {\frac{2}{x}} \right)^4}\left( {\frac{x}{2}} \right) + {}^5{C_2}{\left( {\frac{2}{x}} \right)^3}{\left( {\frac{x}{2}} \right)^2} - {}^5{C_3}{\left( {\frac{2}{x}} \right)^2}{\left( {\frac{x}{2}} \right)^3} + {}^5{C_4}{\left( {\frac{2}{x}} \right)^1}{\left( {\frac{x}{2}} \right)^4} \\ - {}^5{C_5}{\left( {\frac{x}{2}} \right)^5} \\ = \frac{{32}}{{{x^5}}} - 5\left( {\frac{{16}}{{{x^4}}}} \right)\left( {\frac{x}{2}} \right) + 10\left( {\frac{8}{{{x^3}}}} \right)\left( {\frac{{{x^2}}}{4}} \right) - 10\left( {\frac{4}{{{x^2}}}} \right)\left( {\frac{{{x^3}}}{8}} \right) + 5\left( {\frac{2}{x}} \right)\left( {\frac{{{x^4}}}{{16}}} \right) - \frac{{{x^5}}}{{32}} \\ = \frac{{32}}{{{x^5}}} - \frac{{40}}{{{x^3}}} + \frac{{20}}{x} - 5x + \frac{5}{8}{x^3} - \frac{{{x^5}}}{{32}} \\ \end{gathered}\]


3. Expand the expression ${\left( {2x - 3} \right)^6}$.

Ans. By using Binomial Theorem, the expression ${\left( {2x - 3} \right)^6}$ can be expanded as

\[\begin{gathered} {\left( {2x - 3} \right)^6} = {}^6{C_0}{\left( {2x} \right)^6} - {}^6{C_1}{\left( {2x} \right)^5}\left( 3 \right) + {}^6{C_2}{\left( {2x} \right)^4}{\left( 3 \right)^2} - {}^6{C_3}{\left( {2x} \right)^3}{\left( 3 \right)^3} + {}^6{C_4}{\left( {2x} \right)^2}{\left( 3 \right)^4} \\ - {}^6{C_5}\left( {2x} \right){\left( 3 \right)^5} + {}^6{C_6}{\left( 3 \right)^6} \\ = 64{x^6} - 6\left( {32{x^5}} \right)\left( 3 \right) + 15\left( {16{x^4}} \right)\left( 9 \right) - 20\left( {8{x^3}} \right)\left( {27} \right) + 15\left( {4{x^2}} \right)\left( {81} \right) \\ - 6\left( {2x} \right)\left( {243} \right) + 729 \\ = 64{x^6} - 576{x^5} + 2160{x^4} - 4320{x^3} + 4860{x^2} - 2916x + 729 \\ \end{gathered}\]


4. Expand the expression ${\left( {\frac{x}{3} + \frac{1}{x}} \right)^5}$.

Ans. By using Binomial Theorem, the expression ${\left( {\frac{x}{3} + \frac{1}{x}} \right)^5}$ can be expanded as

\[\begin{gathered} {\left( {\frac{x}{3} + \frac{1}{x}} \right)^5} = {}^5{C_0}{\left( {\frac{x}{3}} \right)^5} + {}^5{C_1}{\left( {\frac{x}{3}} \right)^4}\left( {\frac{1}{x}} \right) + {}^5{C_2}{\left( {\frac{x}{3}} \right)^3}{\left( {\frac{1}{x}} \right)^2} + {}^5{C_3}{\left( {\frac{x}{3}} \right)^2}{\left( {\frac{1}{x}} \right)^3} + {}^5{C_4}{\left( {\frac{x}{3}} \right)^1}{\left( {\frac{1}{x}} \right)^4} \\ + {}^5{C_5}{\left( {\frac{1}{x}} \right)^5} \\ = \frac{{{x^5}}}{{243}} + 5\left( {\frac{{{x^4}}}{{81}}} \right)\left( {\frac{1}{x}} \right) + 10\left( {\frac{{{x^3}}}{{27}}} \right)\left( {\frac{1}{{{x^2}}}} \right) + 10\left( {\frac{{{x^2}}}{9}} \right)\left( {\frac{1}{{{x^3}}}} \right) + 5\left( {\frac{x}{3}} \right)\left( {\frac{1}{{{x^4}}}} \right) + \frac{1}{{{x^5}}} \\ = \frac{{{x^5}}}{{243}} + \frac{{5{x^3}}}{{81}} + \frac{{10x}}{{27}} + \frac{{10}}{{9x}} + \frac{5}{{3{x^3}}} + \frac{1}{{{x^5}}} \\ \end{gathered} \]


5. Expand the expression ${\left( {x + \frac{1}{x}} \right)^6}$.

Ans. By using Binomial Theorem, the expression ${\left( {x + \frac{1}{x}} \right)^6}$ can be expanded as

\[\begin{gathered} {\left( {x + \frac{1}{x}} \right)^6} = {}^6{C_0}{\left( x \right)^6} + {}^6{C_1}{\left( x \right)^5}\left( {\frac{1}{x}} \right) + {}^6{C_2}{\left( x \right)^4}{\left( {\frac{1}{x}} \right)^2} + {}^6{C_3}{\left( x \right)^3}{\left( {\frac{1}{x}} \right)^3} + {}^6{C_4}{\left( x \right)^2}{\left( {\frac{1}{x}} \right)^4} \\ + {}^6{C_5}\left( x \right){\left( {\frac{1}{x}} \right)^5} + {}^6{C_6}{\left( {\frac{1}{x}} \right)^6} \\ = {x^6} + 6\left( {{x^5}} \right)\left( {\frac{1}{x}} \right) + 15\left( {{x^4}} \right)\left( {\frac{1}{{{x^2}}}} \right) + 20\left( {{x^3}} \right)\left( {\frac{1}{{{x^3}}}} \right) + 15\left( {{x^2}} \right)\left( {\frac{1}{{{x^4}}}} \right) + 6\left( x \right)\left( {\frac{1}{{{x^5}}}} \right) + \frac{1}{{{x^6}}} \\ = {x^6} + 6{x^4} + 15{x^2} + 20 + \frac{{15}}{{{x^2}}} + \frac{6}{{{x^4}}} + \frac{1}{{{x^6}}} \\ \end{gathered}\]


6. Using Binomial Theorem, evaluate ${\left( {96} \right)^3}$.

Ans. 96 can be expressed as the sum or difference of two numbers whose powers are easier to calculate and then, the binomial theorem can be applied.

It can be written that, $96 = 100 - 4$ 

\[\begin{gathered} {\left( {96} \right)^3} = {\left( {100 - 4} \right)^3} \\ = {}^3{C_0}{\left( {100} \right)^3} - {}^3{C_1}{\left( {100} \right)^2}\left( 4 \right) + {}^3{C_2}\left( {100} \right){\left( 4 \right)^2} - {}^3{C_3}{\left( 4 \right)^3} \\ = 1000000 - 3\left( {10000} \right)\left( 4 \right) + 3\left( {100} \right)\left( {16} \right) - 64 \\ = 1000000 - 120000 + 4800 - 64 \\ = 884736 \\ \end{gathered}\]


7. Using Binomial Theorem, evaluate ${\left( {102} \right)^5}$.

Ans. 102 can be expressed as the sum or difference of two numbers whose powers are easier to calculate and then, the binomial theorem can be applied.

It can be written that, $102 = 100 + 2$ 

\[\begin{gathered} {\left( {102} \right)^5} = {\left( {100 + 2} \right)^5} \\ = {}^5{C_0}{\left( {100} \right)^5} + {}^5{C_1}{\left( {100} \right)^4}\left( 2 \right) + {}^5{C_2}{\left( {100} \right)^3}{\left( 2 \right)^2} + {}^5{C_3}{\left( {100} \right)^2}{\left( 2 \right)^3} + {}^5{C_4}\left( {100} \right){\left( 2 \right)^4} \\ + {}^5{C_5}{\left( 2 \right)^5} \\ = 10000000000 + 5\left( {100000000} \right)\left( 2 \right) + 10\left( {1000000} \right)\left( 4 \right) + 10\left( {10000} \right)\left( 8 \right) \\ + 5\left( {100} \right)\left( {16} \right) + 32 \\ = 10000000000 + 1000000000 + 40000000 + 80000 + 8000 + 32 \\ = 11040808032 \\ \end{gathered} \]


8. Using Binomial Theorem, evaluate ${\left( {101} \right)^4}$.

Ans. 101 can be expressed as the sum or difference of two numbers whose powers are easier to calculate and then, the binomial theorem can be applied.

It can be written that, $101 = 100 + 1$ 

\[\begin{gathered} {\left( {101} \right)^4} = {\left( {100 + 1} \right)^4} \\ = {}^4{C_0}{\left( {100} \right)^4} + {}^4{C_1}{\left( {100} \right)^3}\left( 1 \right) + {}^4{C_2}{\left( {100} \right)^2}{\left( 1 \right)^2} + {}^4{C_3}\left( {100} \right){\left( 1 \right)^3} + {}^4{C_4}{\left( 1 \right)^4} \\ = 100000000 + 4\left( {1000000} \right) + 6\left( {10000} \right) + 4\left( {100} \right) + 1 \\ = 100000000 + 4000000 + 60000 + 400 + 1 \\ = 104060401 \\ \end{gathered} \]


9. Using Binomial Theorem, evaluate ${\left( {99} \right)^5}$.

Ans. 99 can be expressed as the sum or difference of two numbers whose powers are easier to calculate and then, the binomial theorem can be applied.

It can be written that, $99 = 100 - 1$ 

$\begin{gathered} {\left( {99} \right)^5} = {\left( {100 - 1} \right)^5} \\ = {}^5{C_0}{\left( {100} \right)^5} - {}^5{C_1}{\left( {100} \right)^4}\left( 1 \right) + {}^5{C_2}{\left( {100} \right)^3}{\left( 1 \right)^2} - {}^5{C_3}{\left( {100} \right)^2}{\left( 1 \right)^3} + {}^5{C_4}\left( {100} \right){\left( 1 \right)^4} \\ - {}^5{C_5}{\left( 1 \right)^5} \\ = 10000000000 - 5\left( {100000000} \right) - 10\left( {1000000} \right) - 10\left( {10000} \right) + 5\left( {100} \right) - 1 \\ = 10000000000 - 500000000 - 10000000 - 100000 + 500 - 1 \\ = 9509900499 \\ \end{gathered} $


10. Using Binomial Theorem, indicate which number is larger ${\left( {1.1} \right)^{10000}}$ or $1000$.

Ans. By splitting 1.1 and then applying the Binomial Theorem, the first few terms of ${\left( {1.1} \right)^{10000}}$ be obtained as

${\left( {1.1} \right)^{10000}}$ be obtained as \[\begin{gathered} {\left( {1.1} \right)^{10000}} = {\left( {1 + 0.1} \right)^{10000}} \\ = {}^{10000}{C_0} + {}^{10000}{C_1}\left( {1.1} \right) + {\text{Other positive terms}} \\ = 1 + 10000 \times 1.1 + {\text{Other positive terms}} \\ = 1 + 11000 + {\text{Other positive terms}} \\ > 1000 \\ \end{gathered}$

Hence, \[{\left( {1.1} \right)^{10000}} > 1000\]


11. Find ${\left( {a + b} \right)^4} - {\left( {a - b} \right)^4}$. Hence, evaluate ${\left( {\sqrt 3  + \sqrt 2 } \right)^4} - {\left( {\sqrt 3  - \sqrt 2 } \right)^4}$.

Ans. Using Binomial Theorem, the expressions, ${\left( {a + b} \right)^4}$ and ${\left( {a - b} \right)^4}$ , can be expanded as 

\[\begin{gathered} {\left( {a + b} \right)^4} = {}^4{C_0}{a^4} + {}^4{C_1}{a^3}b + {}^4{C_2}{a^2}{b^2} + {}^4{C_3}a{b^3} + {}^4{C_4}{b^4} \\ {\left( {a - b} \right)^4} = {}^4{C_0}{a^4} - {}^4{C_1}{a^3}b + {}^4{C_2}{a^2}{b^2} - {}^4{C_3}a{b^3} + {}^4{C_4}{b^4} \\ \end{gathered} \]

Therefore,

\[\begin{gathered} {\left( {a + b} \right)^4} - {\left( {a - b} \right)^4} = {}^4{C_0}{a^4} + {}^4{C_1}{a^3}b + {}^4{C_2}{a^2}{b^2} + {}^4{C_3}a{b^3} + {}^4{C_4}{b^4} -  \\ \left[ {{}^4{C_0}{a^4} - {}^4{C_1}{a^3}b + {}^4{C_2}{a^2}{b^2} - {}^4{C_3}a{b^3} + {}^4{C_4}{b^4}} \right] \\ = 2\left( {{}^4{C_1}{a^3}b + {}^4{C_3}a{b^3}} \right) \\ = 2\left( {4{a^3}b + 4a{b^3}} \right) \\ = 8ab\left( {{a^2} + {b^2}} \right) \\ \end{gathered} \]

By putting $a = \sqrt 3 $ and $b = \sqrt 2 $, we obtain

\[\begin{gathered} {\left( {\sqrt 3  + \sqrt 2 } \right)^4} - {\left( {\sqrt 3  - \sqrt 2 } \right)^4} = 8\left( {\sqrt 3 } \right)\left( {\sqrt 2 } \right)\left[ {{{\left( {\sqrt 3 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}} \right] \\ = 8\sqrt 6 \left( {3 + 2} \right) \\ = 40\sqrt 6  \\ \end{gathered} \]


12. Find ${\left( {x + 1} \right)^6} + {\left( {x - 1} \right)^6}$. Hence or otherwise evaluate ${\left( {\sqrt 2  + 1} \right)^6} + {\left( {\sqrt 2  - 1} \right)^6}$.

Ans. Using Binomial Theorem, the expressions, ${\left( {x + 1} \right)^6}$ and ${\left( {x - 1} \right)^6}$ , can be expanded as 

\[\begin{gathered} {\left( {x + 1} \right)^6} = {}^6{C_0}{x^6} + {}^6{C_1}{x^5} + {}^6{C_2}{x^4} + {}^6{C_3}{x^3} + {}^6{C_4}{x^2} + {}^6{C_5}x + {}^6{C_6} \hfill \\ {\left( {x - 1} \right)^6} = {}^6{C_0}{x^6} - {}^6{C_1}{x^5} + {}^6{C_2}{x^4} - {}^6{C_3}{x^3} + {}^6{C_4}{x^2} - {}^6{C_5}x + {}^6{C_6} \hfill \\ \end{gathered} \]

Therefore,

\[\begin{gathered} {\left( {x + 1} \right)^6} + {\left( {x - 1} \right)^6} = {}^6{C_0}{x^6} + {}^6{C_1}{x^5} + {}^6{C_2}{x^4} + {}^6{C_3}{x^3} + {}^6{C_4}{x^2} + {}^6{C_5}x + {}^6{C_6} \\ + \left[ {{}^6{C_0}{x^6} - {}^6{C_1}{x^5} + {}^6{C_2}{x^4} - {}^6{C_3}{x^3} + {}^6{C_4}{x^2} - {}^6{C_5}x + {}^6{C_6}} \right] \\ = 2\left( {{}^6{C_0}{x^6} + {}^6{C_2}{x^4} + {}^6{C_4}{x^2} + {}^6{C_6}} \right) \\ = 2\left( {{x^6} + 15{x^4} + 15{x^2} + 1} \right) \\ \end{gathered} \]

By putting $x = \sqrt 2 $, we obtain

\[\begin{gathered} {\left( {\sqrt 2  + 1} \right)^6} + {\left( {\sqrt 2  - 1} \right)^6} = 2\left[ {{{\left( {\sqrt 2 } \right)}^6} + 15{{\left( {\sqrt 2 } \right)}^4} + 15{{\left( {\sqrt 2 } \right)}^2} + 1} \right] \\ = 2\left[ {8 + 15 \cdot 4 + 15 \cdot 2 + 1} \right] \\ = 2\left[ {8 + 60 + 30 + 1} \right] \\ = 2 \times 99 \\ = 198 \\ \end{gathered} \]


13. Show that ${9^{n + 1}} - 8n - 9$ is divisible by 64, whenever n is a positive integer.

Ans. In order to show that ${9^{n + 1}} - 8n - 9$ is divisible by 64, it has to be prove that, ${9^{n + 1}} - 8n - 9 = 64k$, where k is some natural number.

By Binomial Theorem,

${\left( {1 + a} \right)^m} = {}^m{C_0} + {}^m{C_1}a + {}^m{C_2}{a^2} + ... + {}^m{C_m}{a^m}$

For $a = 8$ and $m = n + 1$, we obtain

\[\begin{gathered} {\left( {1 + 8} \right)^{n + 1}} = {}^{n + 1}{C_0} + {}^{n + 1}{C_1}\left( 8 \right) + {}^{n + 1}{C_2}{\left( 8 \right)^2} + ... + {}^{n + 1}{C_{n + 1}}{\left( 8 \right)^{n + 1}} \\ {9^{n + 1}} = 1 + \left( {n + 1} \right)\left( 8 \right) + {8^2}\left[ {{}^{n + 1}{C_2} + {}^{n + 1}{C_3} \times 8 + ... + {}^{n + 1}{C_{n + 1}}{{\left( 8 \right)}^{n - 1}}} \right] \\ {9^{n + 1}} = 9 + 8n + 64\left[ {{}^{n + 1}{C_2} + {}^{n + 1}{C_3} \times 8 + ... + {}^{n + 1}{C_{n + 1}}{{\left( 8 \right)}^{n - 1}}} \right] \\ {9^{n + 1}} - 8n - 9 = 64k,{\text{ where }}k = {}^{n + 1}{C_2} + {}^{n + 1}{C_3} \times 8 + ... + {}^{n + 1}{C_{n + 1}}{\left( 8 \right)^{n - 1}}{\text{ is a natural number}} \\ \end{gathered} \]

Thus, ${9^{n + 1}} - 8n - 9$ is divisible by 64, whenever n is a positive integer.


14. Prove that $\sum\limits_{r = 0}^n {{3^r}{}^n{C_r}}  = {4^n}$.

Ans. By Binomial Theorem,

$\sum\limits_{r = 0}^n {{}^n{C_r}{a^{n - r}}{b^r}}  = {\left( {a + b} \right)^n}$

By putting $b = 3$ and $a = 1$ in the above equation, we obtain

$\begin{gathered} \sum\limits_{r = 0}^n {{}^n{C_r}{{\left( 1 \right)}^{n - r}}{{\left( 3 \right)}^r}}  = {\left( {1 + 3} \right)^n} \\ \sum\limits_{r = 0}^n {{3^r}{}^n{C_r}}  = {4^n} \\ \end{gathered} $

Hence proved.


Miscellaneous Exercise:

1. If a and b are distinct integers, prove that a-b is a factor of ${a^n} - {b^n}$, whenever n is a positive integer

(hint: ${a^n} = {(a - b + b)^n}$)

Ans:To prove to prove that(a-b) is a factor of (${a^n} - {b^n}$), it must be proved that ${a^n} - {b^n}$= \[k(a - b)\], where k is some natural number It can be written that, $a = a - b + b$

${((a - b) + b)^n}{ = ^n}{C_0}{(a - b)^n}{ + ^n}{C_1}{(a - b)^{n - 1}}b{ + ^n}{C_2}{(a - b)^{n - 2}}{b^2} +  \ldots { + ^n}{C_{n - 1}}(a - b){b^{n - 1}}{ + ^n}{C_n}{b^n}$

=${(a - b)^n}{ + ^n}{C_1}{(a - b)^{n - 1}}b{ + ^n}{C_2}{(a - b)^{n - 2}}{b^2} +  \ldots { + ^n}{C_{n - 1}}(a - b){b^{n - 1}} + {b^n}$

=${a^n} - {b^n} = (a - b)$$[{(a - b)^{n - 1}}{ + ^n}{C_1}{(a - b)^{n - 2}}b{ + ^n}{C_2}{(a - b)^{n - 3}}{b^2} +  \ldots { + ^n}{C_{n - 1}}{b^{n - 1}}]$

$ \Rightarrow {a^n} - {b^n} = k(a - b)$

Where k =$[{(a - b)^{n - 1}}{ + ^n}{C_1}{(a - b)^{n - 2}}b{ + ^n}{C_2}{(a - b)^{n - 3}}{b^2} +  \ldots { + ^n}{C_{n - 1}}{b^{n - 1}}]$ is a natural number this shows that \[(a - b)\]is a factor of $({a^n} - {b^n})$,

Where n is a positive integer.

 

2. Evaluate \[\left( {\sqrt 3 } \right. + {\left. {\sqrt 2 } \right)^6} - \left( {\sqrt 3 } \right. - {\left. {\sqrt 2 } \right)^6}\]

Ans: Firstly, the expression

${\left( {a + b} \right)^6} - {\left( {a - b} \right)^6}$ is simplified by using Binomial Theorem. This can be done as

${\left( {a + b} \right)^6}$=$^6{C_0}{(a)^6}{ + ^6}{C_1}{(a)^5}b{ + ^6}{C_2}{(a)^4}{b^2}{ + ^6}{C_3}{(a)^3}{b^3}{ + ^6}{C_4}{(a)^2}{b^4}{ + ^6}{C_5}(a){b^5}{ + ^6}{C_6}{b^6}$

=${(a)^6} + 6{(a)^5}b + 15{(a)^4}{b^2} + 20{(a)^3}{b^3} + 15{(a)^2}{b^4} + 6a{b^5} + {b^6}$

Putting a=$\sqrt 3 \,and\,$b=$\sqrt 2 $, we obtain

\[\left( {\sqrt 3 } \right. + {\left. {\sqrt 2 } \right)^6} - \left( {\sqrt 3 } \right. - {\left. {\sqrt 2 } \right)^6}\]

\[ = 2\left( {6 \cdot {{(\sqrt 3 )}^5}(\sqrt 2 ) + 20 \cdot {{(\sqrt 3 )}^3}{{(\sqrt 2 )}^3} + 6 \cdot (\sqrt 3 ){{(\sqrt 2 )}^5}} \right)\]

=\[2 \times 198\sqrt 6 \]

\[ = 396\sqrt 6 \]

 

3. Find the values of${\left( {{a^2} + \sqrt {{a^2} - 1} } \right)^4} + {\left( {{a^2} - \sqrt {{a^2} - 1} } \right)^4}$

Ans: Firstly, the expression is simplified by using the Binomial Theorem.

${\left( {x + y} \right)^4} + {\left( {x - y} \right)^4}$

This can be done as

${\left( {x + y} \right)^4}$=$^4{C_0}{(x)^4}{ + ^4}{C_1}{(x)^3}y{ + ^4}{C_2}{(x)^2}{y^2}{ + ^4}{C_3}x\,{y^3}{ + ^4}{C_4}{y^4}$

=${(x)^4} + 4{(x)^3}y + 6{(x)^2}{y^2} + 4x\,{y^3} + {y^4}$

${\left( {x - y} \right)^4}$=$^4{C_0}{(x)^4}{ - ^4}{C_1}{(x)^3}y{ - ^4}{C_2}{(x)^2}{y^2}{ - ^4}{C_3}x\,{y^3}{ - ^4}{C_4}{y^4}$

=${(x)^4} - 4{(x)^3}y - 6{(x)^2}{y^2} - 4x\,{y^3} - {y^4}$

Putting x=${a^2}$ and $y = \sqrt {{a^2} - 1} ,$ We obtain

${\left( {{a^2} + \sqrt {{a^2} - 1} } \right)^4} + {\left( {{a^2} - \sqrt {{a^2} - 1} } \right)^4}$

\[ = 2\left[ {{{\left( {{a^2}} \right)}^4} + 6{{\left( {{a^2}} \right)}^2}{{\left( {\sqrt {{a^2} - 1} } \right)}^2} + {{\left( {\sqrt {{a^2} - 1} } \right)}^4}} \right]\]

\[ = 2\left[ {\left( {{a^8}} \right) + 6\left( {{a^4}} \right)\left( {{a^2} - 1} \right) + {{\left( {{a^2} - 1} \right)}^2}} \right]\]

\[ = 2\left[ {{a^8} + 6{a^6} - 6{a^4} + {a^4} - 2{a^2} + 1} \right]\]

\[ = 2\left[ {{a^8} + 6{a^6} - 5{a^4} - 2{a^2} + 1} \right]\]

\[ = 2{a^8} + 12{a^6} - 10{a^4} - 4{a^2} + 2\]

 

4. Find an approximation of ${\left( {0.99} \right)^5}$using the first three terms of its expansion.

Ans: $0.99\, = 1 - 0.01$

${\left( {0.99} \right)^5} = {\left( {1 - 0.01} \right)^5}$

\[^5{C_0}{(1)^5}{ - ^5}{C_1}{(1)^4}\left( {0.01} \right){ - ^5}{C_2}{(1)^3}{\left( {0.01} \right)^2}\]

(Approximately)

$ = 1 - 0.05 + 0.001$

$ = 1.001 - 0.05$

=$ = 0.951$

Thus, the value of ${\left( {0.99} \right)^5}$is approximately 0.951

 

5. Expand using Binomial Theorem ${\left( {1 + \dfrac{x}{2} - \dfrac{2}{x}} \right)^4},\,x \ne 0$

Ans: ${\left( {1 + \dfrac{x}{2} - \dfrac{2}{x}} \right)^4}$

\[{ = ^n}{C_0}\left( {1 + {{\dfrac{x}{2}}^4}} \right){ - ^n}{C_1}{\left( {1 + {{\dfrac{x}{2}}^4}} \right)^3}\left( {\dfrac{2}{x}} \right) - {\,^n}{C_2}{\left( {1 + {{\dfrac{x}{2}}^4}} \right)^2}{\left( {\dfrac{2}{x}} \right)^2}{ - ^n}{C_3}\left( {1 + {{\dfrac{x}{2}}^4}} \right){\left( {\dfrac{2}{x}} \right)^3}{ - ^n}{C_4}{\left( {\dfrac{2}{x}} \right)^4}\]

\[ = \left( {1 + {{\dfrac{x}{2}}^4}} \right) - 4{\left( {1 + {{\dfrac{x}{2}}^4}} \right)^3}\left( {\dfrac{2}{x}} \right) + \,6\left( {1 + x + {{\dfrac{x}{4}}^2}} \right)\left( {\dfrac{4}{{{x^2}}}} \right) - 4\left( {1 + \dfrac{x}{2}} \right)\left( {\dfrac{8}{{{x^3}}}} \right) + \left( {\dfrac{{16}}{{{x^4}}}} \right)\]

\[ = \left( {1 + {{\dfrac{x}{2}}^4}} \right) - {\left( {1 + {{\dfrac{x}{2}}^4}} \right)^3}\left( {\dfrac{8}{x}} \right) + \,\left( {\dfrac{8}{{{x^2}}}} \right) + \dfrac{{24}}{x} + 6 - \left( {\dfrac{{32}}{{{x^3}}}} \right) + \left( {\dfrac{{16}}{{{x^4}}}} \right)\]…..(1)

Again, by using the Binomial Theorem, we obtain

\[{\left( {1 + \dfrac{x}{2}} \right)^4}{ = ^4}{C_0}{(1)^4}{ + ^4}{C_1}{(1)^3}\left( {\dfrac{x}{2}} \right){ + ^4}{C_2}{(1)^2}{\left( {\dfrac{x}{2}} \right)^2}{ + ^4}{C_3}\,{\left( {\dfrac{x}{2}} \right)^3}{ + ^4}{C_4}{\left( {\dfrac{x}{2}} \right)^4}\]

$ = 1 + 4 \times \dfrac{x}{2} + 6 \times \dfrac{{{x^4}}}{4} + 4 \times \dfrac{{{x^3}}}{8} + \dfrac{{{x^3}}}{{16}}$

$ = 1 + 2x + \dfrac{{3{x^2}}}{2} + \dfrac{{{x^3}}}{2} + \dfrac{{{x^4}}}{{16}}$…..(2)

\[{\left( {1 + \dfrac{x}{2}} \right)^3}{ = ^3}{C_0}{(1)^3}{ + ^3}{C_1}{(1)^2}\left( {\dfrac{x}{2}} \right){ + ^3}{C_2}(1){\left( {\dfrac{x}{2}} \right)^2}{ + ^3}{C_3}\,{\left( {\dfrac{x}{2}} \right)^3}\]

$ = \,1 + \dfrac{{3x}}{2} + \dfrac{{3{x^2}}}{4} + \dfrac{{{x^3}}}{8} + \dfrac{{{x^3}}}{8}$…… (3)

From (1), (2), and (3) we obtain

${\left( {\left( {1 + \dfrac{x}{2}} \right) - \dfrac{2}{x}} \right)^4}$

$ = 1 + 2x + \dfrac{{3{x^2}}}{2} + \dfrac{{{x^3}}}{2} + \dfrac{{{x^4}}}{{16}} - \left( {\dfrac{8}{x}} \right)\left( {1 + \dfrac{{3x}}{2} + \dfrac{{3{x^2}}}{4} + \dfrac{{{x^3}}}{8}} \right) + \dfrac{8}{{{x^2}}} + \dfrac{{24}}{x} + 6 - \dfrac{{32}}{{{x^3}}} + \dfrac{{16}}{{{x^4}}}$

$ = 1 + 2x + \dfrac{{3{x^2}}}{2} + \dfrac{{{x^3}}}{2} + \dfrac{{{x^4}}}{{16}} - \dfrac{8}{x} - 12 - 6x - {x^2} - \dfrac{8}{{{x^2}}} + \dfrac{{24}}{x} + 6 - \dfrac{{32}}{{{x^3}}} + \dfrac{{16}}{{{x^4}}}$

$ = \dfrac{{16}}{x} + \dfrac{8}{{{x^2}}} - \dfrac{{32}}{{{x^3}}} + \dfrac{{16}}{{{x^4}}} - 4x + \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{2} + \dfrac{{{x^4}}}{{16}} - 5$.

 

6. Find the expansion of ${\left( {3{x^2} - 2ax + 3{a^2}} \right)^3}$using binomial theorem.

Ans: Using the Binomial Theorem, the given expression

${\left( {3{x^2} - 2ax + 3{a^2}} \right)^3}$Can be expanded as

${\left( {3{x^2} - 2ax + 3{a^2}} \right)^3}$

${ = ^3}{C_0}{\left( {3{x^2} - 2ax} \right)^3}{ - ^3}{C_1}{\left( {3{x^2} - 2ax} \right)^2}\left( {3{a^2}} \right){ + ^3}{C_2}\left( {3{x^2} - 2ax} \right){\left( {3{a^2}} \right)^2}{ - ^3}{C_3}{\left( {3{a^2}} \right)^3}$

$ = {\left( {3{x^2} - 2ax} \right)^3} + 3\left( {9{x^4} - 12a{x^3} + 4{a^2}{x^2}} \right)\left( {3{a^2}} \right) + 3\left( {3{x^2} - 2ax} \right)\left( {9{a^4}} \right) + \left( {2{a^6}} \right)$

$ = {\left( {3{x^2} - 2ax} \right)^3} + 81{a^2}{x^4} - 108{a^3}{x^3} + 36{a^4}{x^2} + 81{a^4}{x^2} - 54{a^5}x + 27{a^6}$

$ = {\left( {3{x^2} - 2ax} \right)^3} + 81{a^2}{x^4} - 108{a^3}{x^3} + 117{a^4}{x^2} - 54{a^5}x + 27{a^6}$…. (1)

Again, by using the Binomial Theorem, we obtain

${\left( {3{x^2} - 2ax} \right)^3}$

${ = ^3}{C_0}{\left( {3{x^2}} \right)^3}{ - ^3}{C_1}{\left( {3{x^2}} \right)^2}\left( {2ax} \right){ + ^3}{C_2}\left( {3{x^2}} \right){\left( {2ax} \right)^2}{ - ^3}{C_3}{\left( {2ax} \right)^3}$

\[ = \left( {27{x^6}} \right) - 3\left( {9{x^4}} \right)\left( {2ax} \right) + 3\left( {3{x^2}} \right)\left( {4{a^2}{x^2}} \right) - 8{a^3}{x^3}\]

\[ = 27{x^6} - 54a{x^5} + 36{a^2}{x^4} - 8{a^3}{x^3}\]……… (2)

From (1) and (2), we obtain

${\left( {3{x^2} - 2ax + 3{a^2}} \right)^3}$

\[ = 27{x^6} - 54a{x^5} + 36{a^2}{x^4} - 8{a^3}{x^3} + 81{a^2}{x^4} - 108{a^3}{x^3} + 117{a^4}{x^2} - 54{a^5}x + 27{a^6}\]

\[ = 27{x^6} - 54a{x^5} + 117{a^2}{x^4} - 116{a^3}{x^3} + 117{a^4}{x^2} - 54{a^5}x + 27{a^6}\].


Overview of Deleted Syllabus for CBSE Class 11 Maths Binomial Theorem

Chapter

Dropped Topics

Binomial Theorem

General Middle Terms

Question: 1–3, and 8 (Miscellaneous Exercise)

The last two points in the Summary


Class 11 Maths Chapter 7: Exercises Breakdown

Exercise

Number of Questions

Exercise 7.1

14 Questions and Solutions

Miscellaneous Exercise

6 Questions and Solutions


Conclusion

Binomial Theorem Class 11 NCERT Solutions is essential for mastering the expansion of binomial expressions and understanding binomial coefficients. It is important to focus on the binomial theorem formula, Pascal's Triangle, and the general and middle terms of the expansion. Practicing these concepts through Vedantu's solutions will help reinforce your understanding. In the previous year's CBSE exams, around 3 to 4 questions were asked from this chapter. By thoroughly studying and practicing, you can enhance your problem-solving skills and perform well in your exams.


Other Study Material for CBSE Class 11 Maths Chapter 7


Chapter-Specific NCERT Solutions for Class 11 Maths

Given below are the chapter-wise NCERT Solutions for Class 11 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Related Links for CBSE Class 11 Maths

WhatsApp Banner

FAQs on NCERT Solutions for Class 11 Maths Chapter 7 Binomial Theorem

1. What is the Binomial Theorem as covered in the NCERT Solutions for Class 11 Maths Chapter 7?

The Binomial Theorem explains how to expand the power of a sum of two terms (a binomial) raised to any positive integer n. The expansion uses binomial coefficients, calculated using combinations, and is written as:

(a + b)n = Σr=0n C(n, r) an-r br

This formula gives all possible terms and their coefficients, helping students solve algebraic expansions efficiently as per CBSE 2025-26 syllabus.

2. How do the NCERT Solutions for Class 11 Maths Chapter 7 help students understand binomial expansions step-by-step?

The NCERT Solutions provide detailed, step-by-step answers to each question, explaining the reasoning and application of the binomial theorem formula, as well as how to compute terms and coefficients. Each method follows the CBSE methodology, ensuring conceptual clarity and efficient problem-solving for board exams.

3. What are the key properties of binomial coefficients you must know for CBSE Class 11?

Crucial properties covered in Chapter 7 NCERT Solutions include:

  • Symmetry: C(n, r) = C(n, n-r)
  • Sum property: Σr=0n C(n, r) = 2n
  • Pascals' Rule: C(n, r) + C(n, r-1) = C(n+1, r)
Understanding and applying these simplifies expansions and problem-solving, as expected in CBSE exams.

4. How can you identify and calculate the general and middle terms in a Binomial expansion?

To find the general term in the expansion of (a + b)n, use:

General Term Tr+1 = C(n, r) an−r br

For the middle term(s):

  • If n is even, the term at position (n/2 + 1) is the middle term.
  • If n is odd, there are two middle terms at positions (n+1)/2 and (n+3)/2.
These methods are explained with examples in the NCERT Solutions for Class 11 Maths Chapter 7.

5. Why is Pascal’s Triangle important for expanding binomials as per Class 11 NCERT?

Pascal's Triangle provides binomial coefficients for each term in the expansion of (a + b)n. By reading the coefficients from the corresponding row, students can quickly write expansions without calculating each coefficient separately. This concept is emphasized in NCERT Solutions Chapter 7 and is commonly tested in CBSE board exams.

6. What types of questions should you practice from NCERT Solutions for Class 11 Maths Chapter 7 to excel in board exams?

Students should practice:

  • Expanding binomials using the theorem
  • Finding specific terms (general, middle, independent of x)
  • Applying divisibility and identity properties
  • Solving word problems involving binomial coefficients
NCERT Solutions offer comprehensive, stepwise guidance for each question type, aligning with the latest CBSE 2025–26 exam pattern.

7. How are word problems connected to the Binomial Theorem in NCERT Solutions for Class 11 Maths?

The chapter includes word problems where students apply binomial expansion concepts to solve practical questions, such as evaluating large powers, finding numbers divisible by certain values, or comparing quantities. These enhance conceptual understanding and problem-solving skills, as expected in CBSE assessments.

8. What is a common error students should avoid when using the binomial theorem as per NCERT guidelines?

A frequent mistake is miscalculating binomial coefficients or incorrectly applying exponent rules, especially for negative or fractional coefficients. Always carefully apply combination formulas and double-check exponents, as detailed in the NCERT Solutions to avoid errors in high-weightage board exam questions.

9. How does the Class 11 Binomial Theorem chapter link with later CBSE Maths topics?

Mastery of binomial expansion is foundational for topics such as Probability, Sequences and Series, and Calculus. Concepts like combinations and term identification recur in higher-level problems, making this chapter crucial for CBSE Class 11 and competitive exams.

10. Why is it important to attempt all NCERT Solutions for Chapter 7 Binomial Theorem in Class 11?

Completing all NCERT Solutions ensures exposure to every concept, formula, and possible question format. This thorough practice builds accuracy, confidence, and speed, addressing diverse exam patterns and boosting scores in both school and board exams as per CBSE guidelines.

11. In what ways does Class 11 Binomial Theorem appear in recent CBSE exams?

Questions based on expansions, properties of coefficients, divisibility, and applications of Pascal’s Triangle have been repeatedly featured in CBSE board papers. Practicing the full range of NCERT Solutions prepares students for the latest CBSE 2025–26 exam trends.

12. What approach is recommended for solving higher-order thinking questions (HOTS) in Binomial Theorem as per NCERT Solutions?

For HOTS, students should:

  • Break down complex expansions into smaller steps
  • Apply properties systematically (like symmetry, combinations with restrictions)
  • Justify each step, referencing the theorem’s logic
This approach aligns with the stepwise solutions in NCERT and is expected in CBSE board answers.

13. Explain the significance of solving miscellaneous exercise questions in NCERT Solutions for Class 11 Maths Chapter 7.

The miscellaneous exercise covers advanced applications, proofs, and combined concept problems. Attempting these questions helps students consolidate understanding and prepares them for unexpected or integrative problems in the board exams.

14. What should you do if you find the middle term is not an integer in the Binomial expansion as per NCERT guidelines?

If the number of terms is even, the expansion will have two middle terms. In such cases, both positions must be evaluated and their terms identified. NCERT Solutions clarify how to handle even and odd exponents for accurate answers on board exams.