
Van’t Hoff factor, when benzoic acid is dissolved in benzene, will be:
(A)2
(B)1
(C)0.5
(D)1.5
Answer
154.2k+ views
Hint: Van’t Hoff factor of the molecules can be calculated by using the following formula,
\[\text{Van }\!\!'\!\!\text{ t Hoff factor i=}\dfrac{\text{n (Observed)}}{\text{n (Theoretical) }}\]
n (observed) = number solute particles present in the solution
n (Theoretical) = number of solute particles without considering association and dissociation.
Complete step by step answer:
>The structure of benzoic acid is as follows.

>The benzoic acid is soluble in water and benzene also.
>The molecular weight of benzoic acid is 122, but the observed molecular weight is 242.
>The observed molecular weight is double the expected molecular weight.
>This indicates that an association of benzoic acid in benzene solution into dimers.
>Therefore the Van’t Hoff factor of benzoic acid in benzene is
\[\begin{align}
& \text{Van }\!\!'\!\!\text{ t Hoff factor i=}\dfrac{\text{n (Observed)}}{\text{n (Theoretical) }} \\
& \text{ = }\dfrac{1}{2}=0.5 \\
\end{align}\]
>The Van’t Hoff factor for benzoic acid in benzene is 0.5.
So, the correct option is C.
Additional information:
>Benzoic acid is most regularly found in industries to manufacture a wide variety of products like perfumes, dyes, and as an insect repellent.
>Benzoic acid is available naturally in many plants and is involved in the biosynthesis of several secondary metabolites.
Note: Benzoic acid in the solution form dimers due to the presence of hydrogen bonding. Hydrogen bonding makes two molecules of benzoic acid into a single molecule by holding the two molecules together. The process of formation of a dimer is called dimerization. By using the Van't Hoff factor we can find the numbers of molecules present in the solution
\[\text{Van }\!\!'\!\!\text{ t Hoff factor i=}\dfrac{\text{n (Observed)}}{\text{n (Theoretical) }}\]
n (observed) = number solute particles present in the solution
n (Theoretical) = number of solute particles without considering association and dissociation.
Complete step by step answer:
>The structure of benzoic acid is as follows.

>The benzoic acid is soluble in water and benzene also.
>The molecular weight of benzoic acid is 122, but the observed molecular weight is 242.
>The observed molecular weight is double the expected molecular weight.
>This indicates that an association of benzoic acid in benzene solution into dimers.
>Therefore the Van’t Hoff factor of benzoic acid in benzene is
\[\begin{align}
& \text{Van }\!\!'\!\!\text{ t Hoff factor i=}\dfrac{\text{n (Observed)}}{\text{n (Theoretical) }} \\
& \text{ = }\dfrac{1}{2}=0.5 \\
\end{align}\]
>The Van’t Hoff factor for benzoic acid in benzene is 0.5.
So, the correct option is C.
Additional information:
>Benzoic acid is most regularly found in industries to manufacture a wide variety of products like perfumes, dyes, and as an insect repellent.
>Benzoic acid is available naturally in many plants and is involved in the biosynthesis of several secondary metabolites.
Note: Benzoic acid in the solution form dimers due to the presence of hydrogen bonding. Hydrogen bonding makes two molecules of benzoic acid into a single molecule by holding the two molecules together. The process of formation of a dimer is called dimerization. By using the Van't Hoff factor we can find the numbers of molecules present in the solution
Recently Updated Pages
Difference Between Alcohol and Phenol

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
Classification of Drugs

In order to convert Aniline into chlorobenzene the class 12 chemistry JEE_Main

Vant Hoff factor when benzoic acid is dissolved in class 12 chemistry JEE_Main

IIIT JEE Main Cutoff 2024

Photoelectric Effect and Stopping Potential with Work Function and Derivation for JEE

Newton’s Laws of Motion: Three Laws of Motion Explanation with Examples

Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 8 Aldehydes Ketones and Carboxylic Acids

NCERT Solutions for Class 12 Chemistry In Hindi Chapter 10 Haloalkanes and Haloarenes In Hindi Mediem

JEE Advanced 2025 Revision Notes for Mechanics

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main Chemistry Online Mock Test for Class 12
