Answer
Verified
114.6k+ views
Hint: First think how light propagates through any surface. Then find out the relation between intensity of light with distance. Now you can draw the picture to make the question easier. At last, assume a distance x m form source and solve the equations.
Formula used:
The expression of intensity of wave is,
$I = \dfrac{{{\text{amount of light }}}}{{{\text{area }}}}$
\[{E_2} = 4{E_1}.{\text{ }}If{\text{ }}x{\text{ is distance from 1st source}},\]
Here ${E_1} = {\text{ intensity of light of 1st source}}$ and ${E_2} = {\text{ intensity of light of 2nd source}}$
Complete step by step solution:
First make a diagram for proper visualization
light intensity and distance are inversely proportional with each other. as the distance increases, the light intensity decreases. if the light source moves farther away, the light spreads over to more area. So light decreases in specific proportion with distance of light. Up to this all we say is general observation. Now let’s check this out scientifically. how light propagates through a medium. Let’s see it with a picture.
So now we can easily observe how light is really propagated. But it is a 2D view in 3D it obviously looks like a sphere. Now come to the point : what is the intensity of light? Intensity of light means the amount of light (lumens) falling on a surface over any given $foo{t^2}$or ${m^2}$. That says light intensity can be written in terms of lumens per square foot (foot candles) or lumens per square meter (lux).
If we formulize it then we get
$I = \dfrac{{{\text{amount of light }}}}{{{\text{area }}}}$
$\Rightarrow I= \dfrac{{{\text{amount of light}}}}{{4\pi {r^2}}}$
$\Rightarrow I= \dfrac{{{\text{amount of light}}}}{{\dfrac{4}{3} \times \pi {r^2}}}$
In both the cases we can clearly see that light is proportional to the inverse of ${r^2}$ which means the square of distance. I think Up to now it's all clear. So, we can say that $I\varpropto\dfrac{1}{{{r^2}}}$.
In the given question we have to find a place between them such that the illuminance on one of its faces is four times that on another face. Let’s solve it. Let’s take the required distance at a $x{\text{ m}}$ from the first object. So, now we can compare at this point due to two sources.
\[{E_2} = 4{E_1}.{\text{ }}If{\text{ }}x{\text{ is distance from 1st source}},\]
Here ${E_1} = {\text{ intensity of light of 1st source}}$ and ${E_2} = {\text{ intensity of light of 2nd source}}$.
\[\dfrac{I}{{{{(1.2 - x)}^2}}} = \dfrac{I}{{4{x^2}}}\]
\[\Rightarrow \dfrac{1}{{1.2 - x}} = \dfrac{2}{x}\]
\[\Rightarrow 3x = 2.4\]
\[\therefore x = 0.8\,m\]
Hence our answer is $0.8\,m$.
Therefore, option C is the correct answer.
Note: As the distance increases, the light intensity decreases. If the light source moves farther away, the light spreads over to more areas. Light is proportional to the inverse of ${r^2}$ which means the square of distance.
Formula used:
The expression of intensity of wave is,
$I = \dfrac{{{\text{amount of light }}}}{{{\text{area }}}}$
\[{E_2} = 4{E_1}.{\text{ }}If{\text{ }}x{\text{ is distance from 1st source}},\]
Here ${E_1} = {\text{ intensity of light of 1st source}}$ and ${E_2} = {\text{ intensity of light of 2nd source}}$
Complete step by step solution:
First make a diagram for proper visualization
light intensity and distance are inversely proportional with each other. as the distance increases, the light intensity decreases. if the light source moves farther away, the light spreads over to more area. So light decreases in specific proportion with distance of light. Up to this all we say is general observation. Now let’s check this out scientifically. how light propagates through a medium. Let’s see it with a picture.
So now we can easily observe how light is really propagated. But it is a 2D view in 3D it obviously looks like a sphere. Now come to the point : what is the intensity of light? Intensity of light means the amount of light (lumens) falling on a surface over any given $foo{t^2}$or ${m^2}$. That says light intensity can be written in terms of lumens per square foot (foot candles) or lumens per square meter (lux).
If we formulize it then we get
$I = \dfrac{{{\text{amount of light }}}}{{{\text{area }}}}$
$\Rightarrow I= \dfrac{{{\text{amount of light}}}}{{4\pi {r^2}}}$
$\Rightarrow I= \dfrac{{{\text{amount of light}}}}{{\dfrac{4}{3} \times \pi {r^2}}}$
In both the cases we can clearly see that light is proportional to the inverse of ${r^2}$ which means the square of distance. I think Up to now it's all clear. So, we can say that $I\varpropto\dfrac{1}{{{r^2}}}$.
In the given question we have to find a place between them such that the illuminance on one of its faces is four times that on another face. Let’s solve it. Let’s take the required distance at a $x{\text{ m}}$ from the first object. So, now we can compare at this point due to two sources.
\[{E_2} = 4{E_1}.{\text{ }}If{\text{ }}x{\text{ is distance from 1st source}},\]
Here ${E_1} = {\text{ intensity of light of 1st source}}$ and ${E_2} = {\text{ intensity of light of 2nd source}}$.
\[\dfrac{I}{{{{(1.2 - x)}^2}}} = \dfrac{I}{{4{x^2}}}\]
\[\Rightarrow \dfrac{1}{{1.2 - x}} = \dfrac{2}{x}\]
\[\Rightarrow 3x = 2.4\]
\[\therefore x = 0.8\,m\]
Hence our answer is $0.8\,m$.
Therefore, option C is the correct answer.
Note: As the distance increases, the light intensity decreases. If the light source moves farther away, the light spreads over to more areas. Light is proportional to the inverse of ${r^2}$ which means the square of distance.
Recently Updated Pages
JEE Main Chemistry Question Paper PDF Download with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
JEE Main 2023 (January 25th Shift 1) Physics Question Paper with Answer Key
JEE Main 2023 (February 1st Shift 2) Chemistry Question Paper with Answer Key
JEE Main 2022 (June 29th Shift 1) Chemistry Question Paper with Answer Key
JEE Main 2022 (June 27th Shift 2) Chemistry Question Paper with Answer Key
Trending doubts
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
Collision - Important Concepts and Tips for JEE
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Other Pages
Young's Double Slit Experiment Derivation
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Current Loop as Magnetic Dipole and Its Derivation for JEE
Two plane mirrors are inclined at angle theta as shown class 12 physics JEE_Main
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Keys & Solutions
JEE Main 2023 January 30 Shift 2 Question Paper with Answer Keys & Solutions