
The maximum number of equivalence relations on the set $A=\left\{ 1,2,3 \right\}$ is
(a) $1$
(b) $2$
(c) $3$
(d) $5$
Answer
524k+ views
Hint: Will find all the possible relations that are equivalence i.e. we will find all the possible relations that are symmetric, reflexive and transitive at the same time.
Before finding the maximum number of equivalence relation on the set $A=\left\{ 1,2,3
\right\}$, we will first discuss what do we mean by the equivalence relation?
A relation is said to be an equivalence relation if it is,
1) Reflexive - A relation $R$ on a set $A$ is said to be reflexive if $\left( a,a \right)$ is there in
relation $R$ $\forall a\in A$.
2) Symmetric – A relation $R$ on a set $A$ is said to be symmetric when, if $\left( a,b \right)$ is
there in the relation, then $\left( b,a \right)$ should also be there in the relation for $a,b\in A$.
3) Transitive – A relation $R$ on a set $A$ is said to be transitive when, if $\left( a,b \right)$ and
$\left( b,c \right)$ are there in the relation, then $\left( a,c \right)$ should also be there in the
relation for $a,b,c\in A$.
For a relation which is defined on the set $A=\left\{ 1,2,3 \right\}$, all possible relations that are
equivalence are,
1) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right) \right\}$
2) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,2 \right),\left( 2,1 \right) \right\}$
3) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,3 \right),\left( 3,1 \right) \right\}$
4) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 2,3 \right),\left( 3,2 \right) \right\}$
5) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,2 \right),\left( 2,1 \right),\left( 1,3
\right),\left( 3,1 \right),\left( 2,3 \right),\left( 3,2 \right) \right\}$
All the possible relations on the set $A=\left\{ 1,2,3 \right\}$ that are equivalence are made in the
above list. So, the maximum number of equivalence relations that are possible on the set $A=\left\{
1,2,3 \right\}$ is equal to 5.
Therefore option (d) is correct answer
Note: There is a possibility that one may make mistakes while writing all the possible equivalence relation that can be formed on the given set $A$. To avoid such mistakes, one can follow these steps. First write down the reflexive relation. Then start writing down the relations that are both reflexive as well as symmetric taking two numbers from set $A$ at a single time. Finally, write down the union relation of all the relations that are generated from the second step.
Before finding the maximum number of equivalence relation on the set $A=\left\{ 1,2,3
\right\}$, we will first discuss what do we mean by the equivalence relation?
A relation is said to be an equivalence relation if it is,
1) Reflexive - A relation $R$ on a set $A$ is said to be reflexive if $\left( a,a \right)$ is there in
relation $R$ $\forall a\in A$.
2) Symmetric – A relation $R$ on a set $A$ is said to be symmetric when, if $\left( a,b \right)$ is
there in the relation, then $\left( b,a \right)$ should also be there in the relation for $a,b\in A$.
3) Transitive – A relation $R$ on a set $A$ is said to be transitive when, if $\left( a,b \right)$ and
$\left( b,c \right)$ are there in the relation, then $\left( a,c \right)$ should also be there in the
relation for $a,b,c\in A$.
For a relation which is defined on the set $A=\left\{ 1,2,3 \right\}$, all possible relations that are
equivalence are,
1) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right) \right\}$
2) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,2 \right),\left( 2,1 \right) \right\}$
3) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,3 \right),\left( 3,1 \right) \right\}$
4) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 2,3 \right),\left( 3,2 \right) \right\}$
5) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,2 \right),\left( 2,1 \right),\left( 1,3
\right),\left( 3,1 \right),\left( 2,3 \right),\left( 3,2 \right) \right\}$
All the possible relations on the set $A=\left\{ 1,2,3 \right\}$ that are equivalence are made in the
above list. So, the maximum number of equivalence relations that are possible on the set $A=\left\{
1,2,3 \right\}$ is equal to 5.
Therefore option (d) is correct answer
Note: There is a possibility that one may make mistakes while writing all the possible equivalence relation that can be formed on the given set $A$. To avoid such mistakes, one can follow these steps. First write down the reflexive relation. Then start writing down the relations that are both reflexive as well as symmetric taking two numbers from set $A$ at a single time. Finally, write down the union relation of all the relations that are generated from the second step.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Maths Chapter 6 Permutations and Combinations (2025-26)

NCERT Solutions For Class 11 Maths Chapter 9 Straight Lines (2025-26)

Statistics Class 11 Maths Chapter 13 CBSE Notes - 2025-26

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

