
The internal resistance of a \[2.1V\] cell which gives a current of $0.2A$ through a resistance of $10\Omega $ is:
A) $0.2\Omega $
B) $0.5\Omega $
C) $0.8\Omega $
D) $1.0\Omega $
Answer
174.3k+ views
Hint: We know that internal and external resistance are the two different aspects. So, we will denote these two properties with two different variables. Now, in the question we are given external resistance, current and voltage of the cell. Now, we know that there is a relation between all these quantities which is given by ohm’s law. Hence, we will use ohm’s law to calculate the internal resistance of the cell by substituting the values.
Formula used:
We will use ohm’s law, that is \[V = I\left( {R + r} \right)\]
Where, $V$ is voltage, $I$ is current, $R$ is external resistance and $r$ is internal resistance.
Complete step by step solution:
In the above question, we can see that
Internal resistance is \[2.1V\], current is $0.2A$ , external resistance is $10\Omega $.
Now, to calculate internal resistance, we will use ohm’s law.
Now, we know that ohm’s law is \[V = I\left( {R + r} \right)\], where, $V$ is voltage, $I$ is current, $R$ is external resistance and $r$ is internal resistance.
So, by substituting the values of external resistance, voltage and current in the given equation,
\[
V = I\left( {R + r} \right) \\
\Rightarrow 2.1 = \left( {0.2} \right)\left( {10 + r} \right) \\
\Rightarrow 10 + r = \dfrac{{21}}{2} \\
\Rightarrow r = \dfrac{{21}}{2} - 10 \\
\]
Now, by simplifying the above value,
We get,
$r = 0.5\Omega $
Hence, the internal resistance of the given cell is $0.5\Omega $ .
Hence, the correct option is (B).
Note: In the above problem we have to note that internal and external resistance are different properties and we know that total resistance is the sum of internal and external resistance. Now, in the calculation part we have to take two variables for internal and external resistance. Now, by substituting the values and simplifying the equation, we will get our answer.
Formula used:
We will use ohm’s law, that is \[V = I\left( {R + r} \right)\]
Where, $V$ is voltage, $I$ is current, $R$ is external resistance and $r$ is internal resistance.
Complete step by step solution:
In the above question, we can see that
Internal resistance is \[2.1V\], current is $0.2A$ , external resistance is $10\Omega $.
Now, to calculate internal resistance, we will use ohm’s law.
Now, we know that ohm’s law is \[V = I\left( {R + r} \right)\], where, $V$ is voltage, $I$ is current, $R$ is external resistance and $r$ is internal resistance.
So, by substituting the values of external resistance, voltage and current in the given equation,
\[
V = I\left( {R + r} \right) \\
\Rightarrow 2.1 = \left( {0.2} \right)\left( {10 + r} \right) \\
\Rightarrow 10 + r = \dfrac{{21}}{2} \\
\Rightarrow r = \dfrac{{21}}{2} - 10 \\
\]
Now, by simplifying the above value,
We get,
$r = 0.5\Omega $
Hence, the internal resistance of the given cell is $0.5\Omega $ .
Hence, the correct option is (B).
Note: In the above problem we have to note that internal and external resistance are different properties and we know that total resistance is the sum of internal and external resistance. Now, in the calculation part we have to take two variables for internal and external resistance. Now, by substituting the values and simplifying the equation, we will get our answer.
Recently Updated Pages
JEE Main Mock Test 2025-26: Chapter-Wise Practice Papers

JEE Main Electromagnetic Waves Mock Test 2025-26 | Free Practice Online

JEE Main 2025-26 Electronic Devices Mock Test: Free Practice Online

JEE Main Mock Test 2025-26: Current Electricity Practice Online

JEE Main 2025-26 Electrostatics Mock Test – Free Practice Online

JEE Main 2025-26 Units and Measurements Mock Test Online

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Electric field due to uniformly charged sphere class 12 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Essential Derivations for CBSE Class 12 Physics: Stepwise & PDF Solutions

Electron Gain Enthalpy and Electron Affinity for JEE

Wheatstone Bridge for JEE Main Physics 2025
