![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The intensity of magnetic field is $H$ and moment of magnet is $M$ . The maximum potential energy is
A. $MH$
B. $2MH$
C. $3MH$
D. $4MH$
Answer
125.4k+ views
Hint:
This problem is based on a Magnetic Field and we know that potential energy directly varies with the uniform magnetic field. Also, the formula for magnetic potential energy is $U = - MB\cos \theta $ hence, use this relation to predict the correct value of $\theta $ to find out the maximum potential energy in the given problem.
Complete step by step solution:
We know that the magnetic potential energy is defined as: -
$U = - \overrightarrow M .\overrightarrow B $
or, $U = - MB\cos \theta $
where M = magnetic dipole moment
B = uniform magnetic Field
and, U = Magnetic Potential Energy
For maximum potential energy, $\cos \theta $ should be maximum and we know that the maximum value of $\cos \theta $ is $1$ when $\theta = {0^ \circ }$.
Since the potential energy is negative, therefore, $\cos \theta $ must be $ - 1$ to maximize the magnetic potential energy, which is possible only when $\theta = {180^ \circ }$.
Thus, Maximum Potential Energy in a given magnetic field $H$ and magnetic moment $M$will be: -
$ \Rightarrow U = - MB\cos \left( {{{180}^ \circ }} \right)$
$ \Rightarrow U = - M(H)( - 1) = MH$ $\left( {\therefore \cos {{180}^ \circ } = - 1{\text{ }}and{\text{ B = H}}} \right)$
Hence, the correct option is (A) $MH$ .
Therefore, the correct option is A.
Note:
Since this is a problem related to a uniform magnetic field and potential energy hence, quantities that are required to calculate the Maximum Potential Energy such as magnetic moment and angle $\theta $ must be identified on a prior basis as it gives a better understanding of the problem and helps to solve the question further.
This problem is based on a Magnetic Field and we know that potential energy directly varies with the uniform magnetic field. Also, the formula for magnetic potential energy is $U = - MB\cos \theta $ hence, use this relation to predict the correct value of $\theta $ to find out the maximum potential energy in the given problem.
Complete step by step solution:
We know that the magnetic potential energy is defined as: -
$U = - \overrightarrow M .\overrightarrow B $
or, $U = - MB\cos \theta $
where M = magnetic dipole moment
B = uniform magnetic Field
and, U = Magnetic Potential Energy
For maximum potential energy, $\cos \theta $ should be maximum and we know that the maximum value of $\cos \theta $ is $1$ when $\theta = {0^ \circ }$.
Since the potential energy is negative, therefore, $\cos \theta $ must be $ - 1$ to maximize the magnetic potential energy, which is possible only when $\theta = {180^ \circ }$.
Thus, Maximum Potential Energy in a given magnetic field $H$ and magnetic moment $M$will be: -
$ \Rightarrow U = - MB\cos \left( {{{180}^ \circ }} \right)$
$ \Rightarrow U = - M(H)( - 1) = MH$ $\left( {\therefore \cos {{180}^ \circ } = - 1{\text{ }}and{\text{ B = H}}} \right)$
Hence, the correct option is (A) $MH$ .
Therefore, the correct option is A.
Note:
Since this is a problem related to a uniform magnetic field and potential energy hence, quantities that are required to calculate the Maximum Potential Energy such as magnetic moment and angle $\theta $ must be identified on a prior basis as it gives a better understanding of the problem and helps to solve the question further.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How Electromagnetic Waves are Formed - Important Concepts for JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Electrical Resistance - Important Concepts and Tips for JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Average Atomic Mass - Important Concepts and Tips for JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Chemical Equation - Important Concepts and Tips for JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Derivation of Equation of Trajectory in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Ideal and Non-Ideal Solutions Raoult's Law - JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)