
The intensity of magnetic field is $H$ and moment of magnet is $M$ . The maximum potential energy is
A. $MH$
B. $2MH$
C. $3MH$
D. $4MH$
Answer
152.4k+ views
Hint:
This problem is based on a Magnetic Field and we know that potential energy directly varies with the uniform magnetic field. Also, the formula for magnetic potential energy is $U = - MB\cos \theta $ hence, use this relation to predict the correct value of $\theta $ to find out the maximum potential energy in the given problem.
Complete step by step solution:
We know that the magnetic potential energy is defined as: -
$U = - \overrightarrow M .\overrightarrow B $
or, $U = - MB\cos \theta $
where M = magnetic dipole moment
B = uniform magnetic Field
and, U = Magnetic Potential Energy
For maximum potential energy, $\cos \theta $ should be maximum and we know that the maximum value of $\cos \theta $ is $1$ when $\theta = {0^ \circ }$.
Since the potential energy is negative, therefore, $\cos \theta $ must be $ - 1$ to maximize the magnetic potential energy, which is possible only when $\theta = {180^ \circ }$.
Thus, Maximum Potential Energy in a given magnetic field $H$ and magnetic moment $M$will be: -
$ \Rightarrow U = - MB\cos \left( {{{180}^ \circ }} \right)$
$ \Rightarrow U = - M(H)( - 1) = MH$ $\left( {\therefore \cos {{180}^ \circ } = - 1{\text{ }}and{\text{ B = H}}} \right)$
Hence, the correct option is (A) $MH$ .
Therefore, the correct option is A.
Note:
Since this is a problem related to a uniform magnetic field and potential energy hence, quantities that are required to calculate the Maximum Potential Energy such as magnetic moment and angle $\theta $ must be identified on a prior basis as it gives a better understanding of the problem and helps to solve the question further.
This problem is based on a Magnetic Field and we know that potential energy directly varies with the uniform magnetic field. Also, the formula for magnetic potential energy is $U = - MB\cos \theta $ hence, use this relation to predict the correct value of $\theta $ to find out the maximum potential energy in the given problem.
Complete step by step solution:
We know that the magnetic potential energy is defined as: -
$U = - \overrightarrow M .\overrightarrow B $
or, $U = - MB\cos \theta $
where M = magnetic dipole moment
B = uniform magnetic Field
and, U = Magnetic Potential Energy
For maximum potential energy, $\cos \theta $ should be maximum and we know that the maximum value of $\cos \theta $ is $1$ when $\theta = {0^ \circ }$.
Since the potential energy is negative, therefore, $\cos \theta $ must be $ - 1$ to maximize the magnetic potential energy, which is possible only when $\theta = {180^ \circ }$.
Thus, Maximum Potential Energy in a given magnetic field $H$ and magnetic moment $M$will be: -
$ \Rightarrow U = - MB\cos \left( {{{180}^ \circ }} \right)$
$ \Rightarrow U = - M(H)( - 1) = MH$ $\left( {\therefore \cos {{180}^ \circ } = - 1{\text{ }}and{\text{ B = H}}} \right)$
Hence, the correct option is (A) $MH$ .
Therefore, the correct option is A.
Note:
Since this is a problem related to a uniform magnetic field and potential energy hence, quantities that are required to calculate the Maximum Potential Energy such as magnetic moment and angle $\theta $ must be identified on a prior basis as it gives a better understanding of the problem and helps to solve the question further.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electrical Field of Charged Spherical Shell - JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Ideal and Non-Ideal Solutions Raoult's Law - JEE
