
The image formed by convex mirror of focal length $30 \mathrm{cm}$ is the quarter of size of
the object. Then the distance of the object from the mirror is,
A. $30 \mathrm{cm}$
B. $90 \mathrm{cm}$
C. $120 \mathrm{cm}$
D. $60 \mathrm{cm}$
Answer
138.9k+ views
Hint Optics is the part of material science that reviews the conduct and properties of light, incorporating its communications with issues and the development of instruments that utilize or distinguish it. Optics as a rule portrays the conduct of obvious, bright, and infrared light. We must keep this in mind before attempting any such question. To proceed we must put the formula for calculation of focal length and formula for magnification.
Complete step by step answer:
From the given question, we know that, the focal length of the convex mirror is $\mathrm{f}=30 \mathrm{cm}$ and that the magnification of the image is $\text{m}=\dfrac{1}{4}$. We have to calculate the object distance that is denoted by u. According to the sign convention, we know that the measurements along the direction of light are taken as positive and that opposite to the light are taken as negative. Therefore, we derive that the transverse measurement above the principal axis is taken as positive and that below the principal axis is taken as negative. Therefore, $f=+30 \mathrm{cm}$ and $\mathrm{m}=+1 / 4=+0.25$.
Using the formula, $\mathrm{m}=\dfrac{\mathrm{f}}{\mathrm{f}-\mathrm{u}}$
$\Rightarrow \text{mf}-\text{mu}=\text{f}$
$\Rightarrow \text{u}=\dfrac{\text{mf}-\text{f}}{\text{m}}=\dfrac{\text{m}-1}{\text{m}}\text{f}=\dfrac{0.25-1}{0.25}(30)=-90\text{cm}$
The minus sign prevails due to the assumption in direction but because we are looking into magnitudes only.
The correct answer is Option B.
Note: We must keep in mind that in optics, the sign related with the result portrays the direction only but to answer such questions, we only consider magnitudes.
Complete step by step answer:
From the given question, we know that, the focal length of the convex mirror is $\mathrm{f}=30 \mathrm{cm}$ and that the magnification of the image is $\text{m}=\dfrac{1}{4}$. We have to calculate the object distance that is denoted by u. According to the sign convention, we know that the measurements along the direction of light are taken as positive and that opposite to the light are taken as negative. Therefore, we derive that the transverse measurement above the principal axis is taken as positive and that below the principal axis is taken as negative. Therefore, $f=+30 \mathrm{cm}$ and $\mathrm{m}=+1 / 4=+0.25$.
Using the formula, $\mathrm{m}=\dfrac{\mathrm{f}}{\mathrm{f}-\mathrm{u}}$
$\Rightarrow \text{mf}-\text{mu}=\text{f}$
$\Rightarrow \text{u}=\dfrac{\text{mf}-\text{f}}{\text{m}}=\dfrac{\text{m}-1}{\text{m}}\text{f}=\dfrac{0.25-1}{0.25}(30)=-90\text{cm}$
The minus sign prevails due to the assumption in direction but because we are looking into magnitudes only.
The correct answer is Option B.
Note: We must keep in mind that in optics, the sign related with the result portrays the direction only but to answer such questions, we only consider magnitudes.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
