
The electric potential at a point in space due to charge $Q$ coulomb is $Q \times {10^{11}}V$. The value of electric field due to charge $Q$ at that point is equal to:
(A) $12\pi { \in _0}Q \times {10^{22}}V{m^{ - 1}}$
(B) $4\pi { \in _0}Q \times {10^{22}}V{m^{ - 1}}$
(C) $12\pi { \in _0}Q \times {10^{20}}V{m^{ - 1}}$
(D) $4\pi { \in _0}Q \times {10^{20}}V{m^{ - 1}}$
Answer
174k+ views
Hint Electric potential at a point in space is directly proportional to charge of source charge and inversely proportional to distance between source charge and that point. An electric field at a point is directly proportional to the charge of source charge and inversely proportional to square of distance between the source charge and that point. Use this relation between electric potential and electric field to find electric field using electric potential at that point.
Complete step by step solution
Electric potential at a point in space is directly proportional to charge of source charge and inversely proportional to distance between source charge and that point.
\[V = \dfrac{1}{{4\pi { \in _0}}}\dfrac{Q}{R}\] (1)
Where $R$ is distance between source charge $Q$ and the given point.
an electric field at a point is directly proportional to the charge of source charge and inversely proportional to square of distance between the source charge and that point.
$E = \dfrac{1}{{4\pi { \in _0}}}\dfrac{Q}{{{R^2}}}$ (2)
Combining equation (1) and (2), we have
$E = \dfrac{{4\pi { \in _0}{V^2}}}{Q}$
Substituting $V = Q \times {10^{11}}$ as given in question, we get
$E = \dfrac{{4\pi { \in _0}{{(Q \times {{10}^{11}})}^2}}}{Q} = 4\pi { \in _0}Q \times {10^{22}}V{m^{ - 1}}$
Hence, the correct answer is option B.
Note Electric field at a point in space due to charge $Q$ gives the value of force applied on unit positive charge placed at that point, where electric potential is potential energy of a unit positive charge at that point due to charge $Q$.
Complete step by step solution
Electric potential at a point in space is directly proportional to charge of source charge and inversely proportional to distance between source charge and that point.
\[V = \dfrac{1}{{4\pi { \in _0}}}\dfrac{Q}{R}\] (1)
Where $R$ is distance between source charge $Q$ and the given point.
an electric field at a point is directly proportional to the charge of source charge and inversely proportional to square of distance between the source charge and that point.
$E = \dfrac{1}{{4\pi { \in _0}}}\dfrac{Q}{{{R^2}}}$ (2)
Combining equation (1) and (2), we have
$E = \dfrac{{4\pi { \in _0}{V^2}}}{Q}$
Substituting $V = Q \times {10^{11}}$ as given in question, we get
$E = \dfrac{{4\pi { \in _0}{{(Q \times {{10}^{11}})}^2}}}{Q} = 4\pi { \in _0}Q \times {10^{22}}V{m^{ - 1}}$
Hence, the correct answer is option B.
Note Electric field at a point in space due to charge $Q$ gives the value of force applied on unit positive charge placed at that point, where electric potential is potential energy of a unit positive charge at that point due to charge $Q$.
Recently Updated Pages
JEE Main 2025-26 Atoms and Nuclei Mock Test: Free Practice Online

JEE Main 2025-26: Dual Nature of Matter and Radiation Mock Test

JEE Main 2025-26 Electronic Devices Mock Test – Free Practice

JEE Main Mock Test 2025-26: Experimental Skills Chapter Online Practice

JEE Main 2025-26 Current Electricity Mock Test: Free Practice Online

JEE Main 2025-26 Rotational Motion Mock Test – Free Practice Online

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Electric field due to uniformly charged sphere class 12 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Essential Derivations for CBSE Class 12 Physics: Stepwise & PDF Solutions

Electron Gain Enthalpy and Electron Affinity for JEE

Wheatstone Bridge for JEE Main Physics 2025
