
The electric field due to a uniformly charged sphere of radius $R$ as a function of the distance from its centre is represented graphically by:
A)

B)

C)

D)

Answer
173.4k+ views
Hint: A graph between electric fields due to a uniformly charged sphere and the distance from the centre of charge sphere is needed to be plotted. It should be kept in mind that the electric field inside the charged sphere is different and the electric field outside the charged sphere is different. The relationship between distance and electric field would also be different inside the charged sphere and outside the charged sphere.
Complete step by step solution:
Let the distance from the centre of the sphere be represented by $r$ .
Now, Case 1: $(r \leqslant R)$ When distance $r$ is less than the radius of the charged sphere that is $R$ .
As we know that, inside a charged sphere of charge $Q$ at distance $r$ from centre is given by,
$E = \dfrac{{Qr}}{{4\pi {\varepsilon _o}{R^3}}}$
As we have to plot Electric field as a function of distance from the centre so in the above relation we can see that, Electric field is directly proportional to the distance from the centre. This can be expressed in the form of an expression as,
$E \propto r$
So, when $(r \leqslant R)$ the Electric field would be directly proportional to distance from the centre.
Now, Case 2: $(r \geqslant R)$
When distance $r$ is more than the radius of the charged sphere that is $R$ .
As we know that, outside a charged sphere of charge $Q$ at distance $r$ from centre is given by,
$E = \dfrac{Q}{{4\pi {\varepsilon _o}{r^2}}}$
As we have to plot Electric field as a function of distance from the centre so in the above relation we can see that, Electric field is inversely proportional to the square of the distance from the centre. This can be expressed in the form of an expression as,
$E \propto \dfrac{1}{{{r^2}}}$
So, when $(r \leqslant R)$ the Electric field would be inversely proportional to the square of the distance from the centre.
Hence option B is the correct answer.
Note: Here it is important to note why the electric field is different inside and outside of the charged sphere. The electric field outside the sphere is seen to be identical to that of a point charge $Q$ at the centre of the sphere. For a radius $(r < R)$ , a Gaussian surface will enclose less than the total charge and the electric field will be less.
Complete step by step solution:
Let the distance from the centre of the sphere be represented by $r$ .
Now, Case 1: $(r \leqslant R)$ When distance $r$ is less than the radius of the charged sphere that is $R$ .
As we know that, inside a charged sphere of charge $Q$ at distance $r$ from centre is given by,
$E = \dfrac{{Qr}}{{4\pi {\varepsilon _o}{R^3}}}$
As we have to plot Electric field as a function of distance from the centre so in the above relation we can see that, Electric field is directly proportional to the distance from the centre. This can be expressed in the form of an expression as,
$E \propto r$
So, when $(r \leqslant R)$ the Electric field would be directly proportional to distance from the centre.
Now, Case 2: $(r \geqslant R)$
When distance $r$ is more than the radius of the charged sphere that is $R$ .
As we know that, outside a charged sphere of charge $Q$ at distance $r$ from centre is given by,
$E = \dfrac{Q}{{4\pi {\varepsilon _o}{r^2}}}$
As we have to plot Electric field as a function of distance from the centre so in the above relation we can see that, Electric field is inversely proportional to the square of the distance from the centre. This can be expressed in the form of an expression as,
$E \propto \dfrac{1}{{{r^2}}}$
So, when $(r \leqslant R)$ the Electric field would be inversely proportional to the square of the distance from the centre.
Hence option B is the correct answer.
Note: Here it is important to note why the electric field is different inside and outside of the charged sphere. The electric field outside the sphere is seen to be identical to that of a point charge $Q$ at the centre of the sphere. For a radius $(r < R)$ , a Gaussian surface will enclose less than the total charge and the electric field will be less.
Recently Updated Pages
JEE Main Mock Test 2025-26: Chapter-Wise Practice Papers

JEE Main Electromagnetic Waves Mock Test 2025-26 | Free Practice Online

JEE Main 2025-26 Electronic Devices Mock Test: Free Practice Online

JEE Main Mock Test 2025-26: Current Electricity Practice Online

JEE Main 2025-26 Electrostatics Mock Test – Free Practice Online

JEE Main 2025-26 Units and Measurements Mock Test Online

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Electric field due to uniformly charged sphere class 12 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Essential Derivations for CBSE Class 12 Physics: Stepwise & PDF Solutions

Electron Gain Enthalpy and Electron Affinity for JEE

Wheatstone Bridge for JEE Main Physics 2025
