
The electric dipole of moment \[\begin{array}{*{20}{c}}
{\overrightarrow p }& = &{( - \widehat i - 3\widehat j + 2\widehat k) \times {{10}^{ - 29}}Cm}
\end{array}\]is at the origin (0,0,0). The electric field due to this dipole at \[\begin{array}{*{20}{c}}
{\overrightarrow r }& = &{(\widehat i + 3\widehat j + 5\widehat k)}
\end{array}\]is parallel to [Note that \[\begin{array}{*{20}{c}}
{\overrightarrow {r.} \overrightarrow p }& = &0
\end{array}\]]
A) \[\widehat i - 3\widehat j - 2\widehat k\]
B) \[ - \widehat i - 3\widehat j + 2\widehat k\]
C ) \[\widehat i + 3\widehat j - 2\widehat k\]
D) \[ - \widehat i + 3\widehat j - 2\widehat k\]
Answer
140.1k+ views
Hint: In this question, we have given a condition:
(\[\begin{array}{*{20}{c}}
{\overrightarrow {r.} \overrightarrow p }& = &0
\end{array}\]),
Therefore, According to the given condition we will get to know that the \[\overrightarrow p \]and position vector \[\overrightarrow r \]will be perpendicular to each other. Due to the opposite direction of the electric field to the electric dipole moment, the electric field vector will be the same as the electric dipole moment but in a negative sign. Hence, we will get a suitable answer.
Complete answer:
Basically, the direction of the electric dipole moment is from negative charge to positive charge while the direction of the electric field is from positive charge to negative charge. In other words, we can say that the direction of the electric field is opposite to the electric dipole moment. Hence, as per the given note \[\begin{array}{*{20}{c}}
{\overrightarrow {r.} \overrightarrow p }& = &0
\end{array}\], we can conclude that the electric dipole moment and electric field will be perpendicular to each other but will be in opposite directions.
Electric dipole moment vector and position vector are given,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \overrightarrow p }& = &{( - \widehat i - 3\widehat j + 2\widehat k) \times {{10}^{ - 29}}Cm}
\end{array}\] and position vector \[\begin{array}{*{20}{c}}
{\overrightarrow r }& = &{(\widehat i + 3\widehat j + 5\widehat k)}
\end{array}\]
Therefore, As per given the condition, we can write that
\[\begin{array}{*{20}{c}}
{ \Rightarrow \overrightarrow {r.} \overrightarrow p }& = &0
\end{array}\]
The \[\overrightarrow p \]and \[\overrightarrow r \]are perpendicular to each other. It means that the electric field will also be perpendicular to the position vector \[\overrightarrow r \].
\[\begin{array}{*{20}{c}}
{ \Rightarrow (\widehat i + 3\widehat j + 5\widehat k).( - \widehat i - 3\widehat j + 2\widehat k)}& = &0
\end{array}\]
Now, we know that the electric field is directly proportional to the electric dipole moment, but will be in the opposite direction. There will be a constant. Whose value will be greater than 0.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \overrightarrow E }& = &{ - \lambda \overrightarrow p }
\end{array}\]
Here, a negative sign indicates that the electric field is in the opposite direction to the electric dipole moment. Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \overrightarrow E }& = &{ - \lambda ( - \widehat i - 3\widehat j + 2\widehat k) \times {{10}^{ - 29}}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow \overrightarrow E }& = &{\lambda (\widehat i + 3\widehat j - 2\widehat k) \times {{10}^{ - 29}}}
\end{array}\]
Therefore,\[\overrightarrow E \]will be parallel to the \[(\widehat i + 3\widehat j - 2\widehat k)\]
Now, the final answer is \[(\widehat i + 3\widehat j - 2\widehat k)\]. So, the correct option is C.
Note: In this question, the first point is to keep in mind that the \[\begin{array}{*{20}{c}}
\lambda & > &0
\end{array}\], Where, \[\lambda \]is constant which is the replacement of the proportionality sign.
(\[\begin{array}{*{20}{c}}
{\overrightarrow {r.} \overrightarrow p }& = &0
\end{array}\]),
Therefore, According to the given condition we will get to know that the \[\overrightarrow p \]and position vector \[\overrightarrow r \]will be perpendicular to each other. Due to the opposite direction of the electric field to the electric dipole moment, the electric field vector will be the same as the electric dipole moment but in a negative sign. Hence, we will get a suitable answer.
Complete answer:
Basically, the direction of the electric dipole moment is from negative charge to positive charge while the direction of the electric field is from positive charge to negative charge. In other words, we can say that the direction of the electric field is opposite to the electric dipole moment. Hence, as per the given note \[\begin{array}{*{20}{c}}
{\overrightarrow {r.} \overrightarrow p }& = &0
\end{array}\], we can conclude that the electric dipole moment and electric field will be perpendicular to each other but will be in opposite directions.
Electric dipole moment vector and position vector are given,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \overrightarrow p }& = &{( - \widehat i - 3\widehat j + 2\widehat k) \times {{10}^{ - 29}}Cm}
\end{array}\] and position vector \[\begin{array}{*{20}{c}}
{\overrightarrow r }& = &{(\widehat i + 3\widehat j + 5\widehat k)}
\end{array}\]
Therefore, As per given the condition, we can write that
\[\begin{array}{*{20}{c}}
{ \Rightarrow \overrightarrow {r.} \overrightarrow p }& = &0
\end{array}\]
The \[\overrightarrow p \]and \[\overrightarrow r \]are perpendicular to each other. It means that the electric field will also be perpendicular to the position vector \[\overrightarrow r \].
\[\begin{array}{*{20}{c}}
{ \Rightarrow (\widehat i + 3\widehat j + 5\widehat k).( - \widehat i - 3\widehat j + 2\widehat k)}& = &0
\end{array}\]
Now, we know that the electric field is directly proportional to the electric dipole moment, but will be in the opposite direction. There will be a constant. Whose value will be greater than 0.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \overrightarrow E }& = &{ - \lambda \overrightarrow p }
\end{array}\]
Here, a negative sign indicates that the electric field is in the opposite direction to the electric dipole moment. Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \overrightarrow E }& = &{ - \lambda ( - \widehat i - 3\widehat j + 2\widehat k) \times {{10}^{ - 29}}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow \overrightarrow E }& = &{\lambda (\widehat i + 3\widehat j - 2\widehat k) \times {{10}^{ - 29}}}
\end{array}\]
Therefore,\[\overrightarrow E \]will be parallel to the \[(\widehat i + 3\widehat j - 2\widehat k)\]
Now, the final answer is \[(\widehat i + 3\widehat j - 2\widehat k)\]. So, the correct option is C.
Note: In this question, the first point is to keep in mind that the \[\begin{array}{*{20}{c}}
\lambda & > &0
\end{array}\], Where, \[\lambda \]is constant which is the replacement of the proportionality sign.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

A point charge + 20mu C is at a distance 6cm directly class 12 physics JEE_Main

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
